Intrepid2
Intrepid2_HierarchicalBasisFamily.hpp
Go to the documentation of this file.
1 // @HEADER
2 // *****************************************************************************
3 // Intrepid2 Package
4 //
5 // Copyright 2007 NTESS and the Intrepid2 contributors.
6 // SPDX-License-Identifier: BSD-3-Clause
7 // *****************************************************************************
8 // @HEADER
9 
15 #ifndef Intrepid2_HierarchicalBasisFamily_h
16 #define Intrepid2_HierarchicalBasisFamily_h
17 
19 
33 
34 namespace Intrepid2 {
35 
36 
37 //Dummy basis to be temporarily used for Hierarchical bases that have not been implemented yet
38  template<typename ExecutionSpace, typename OutputScalar, typename PointScalar>
39  class dummyBasis
40  : public Basis<ExecutionSpace,OutputScalar,PointScalar> {
41  public:
42  dummyBasis(int /*order*/, EPointType /*pointType*/= POINTTYPE_DEFAULT) {};
43  };
44 
45 // the following defines a family of hierarchical basis functions that matches the unpermuted ESEAS basis functions
46 // each basis member is associated with appropriate subcell topologies, making this suitable for continuous Galerkin finite elements.
47  template<typename DeviceType,
48  typename OutputScalar = double,
49  typename PointScalar = double,
50  bool defineVertexFunctions = true>
52  {
53  public:
54  // we will fill these in as we implement them
56  using HCURL = HierarchicalBasis_HCURL_TRI<DeviceType,OutputScalar,PointScalar,defineVertexFunctions>; // last template argument: useCGBasis; corresponds with defineVertexFunctions.
57  using HDIV = HierarchicalBasis_HDIV_TRI<DeviceType,OutputScalar,PointScalar,defineVertexFunctions>; // last template argument: useCGBasis; corresponds with defineVertexFunctions.
59  };
60 
61  template<typename DeviceType,
62  typename OutputScalar = double,
63  typename PointScalar = double,
64  bool defineVertexFunctions = true>
66  {
67  public:
68  // we will fill these in as we implement them
73  };
74 
75 
76  template<typename DeviceType,
77  typename OutputScalar = double,
78  typename PointScalar = double,
79  bool defineVertexFunctions = true>
81  {
82  public:
83  // we will fill these in as we implement them
85  using HCURL = void;
88  };
89 
110  template<typename DeviceType,
111  typename OutputScalar = double,
112  typename PointScalar = double>
118  >;
119 
128  template<typename DeviceType,
129  typename OutputScalar = double,
130  typename PointScalar = double>
136  >;
137 
138 }
139 
140 #endif /* Intrepid2_HierarchicalBasisFamily_h */
H(grad) basis on the line based on integrated Legendre polynomials.
Basis defining integrated Legendre basis on the line, a polynomial subspace of H(grad) on the line...
H(vol) basis on the triangle based on integrated Legendre polynomials.
Basis defining integrated Legendre basis on the line, a polynomial subspace of H(grad) on the line...
H(div) basis on the triangle using a construction involving Legendre and integrated Jacobi polynomial...
Stateless class representing a family of basis functions, templated on H(vol) and H(grad) on the line...
An abstract base class that defines interface for concrete basis implementations for Finite Element (...
A family of hierarchical basis functions, constructed in a way that follows work by Fuentes et al...
H(curl) basis on the triangle using a construction involving Legendre and integrated Jacobi polynomia...
For mathematical details of the construction, see:
H(grad) basis on the pyramid based on integrated Legendre polynomials.
Basis defining integrated Legendre basis on the line, a polynomial subspace of H(grad) on the line...
For mathematical details of the construction, see:
H(vol) basis on the pyramid based on Legendre polynomials.
Basis defining integrated Legendre basis on the line, a polynomial subspace of H(grad) on the line...
Basis defining Legendre basis on the line, a polynomial subspace of L^2 (a.k.a. H(vol)) on the line...
H(curl) basis on the triangle using a construction involving Legendre and integrated Jacobi polynomia...
Basis defining integrated Legendre basis on the line, a polynomial subspace of H(grad) on the line: e...
H(vol) basis on the line based on Legendre polynomials.
H(div) basis on the tetrahedron using a construction involving Legendre and integrated Jacobi polynom...
H(grad) basis on the triangle based on integrated Legendre polynomials.
For mathematical details of the construction, see:
A family of basis functions, constructed from H(vol) and H(grad) bases on the line.
Basis defining Legendre basis on the line, a polynomial subspace of H(vol) on the line: extension to ...
H(grad) basis on the tetrahedon based on integrated Legendre polynomials.
H(div) basis on the pyramid based on integrated Legendre polynomials.
Basis defining Legendre basis on the line, a polynomial subspace of H(vol) on the line: extension to ...
H(vol) basis on the triangle based on integrated Legendre polynomials.
For mathematical details of the construction, see: