Intrepid2
Intrepid2_HDIV_TRI_In_FEMDef.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Intrepid2 Package
5 // Copyright (2007) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact Kyungjoo Kim (kyukim@sandia.gov), or
38 // Mauro Perego (mperego@sandia.gov)
39 //
40 // ************************************************************************
41 // @HEADER
42 
49 #ifndef __INTREPID2_HDIV_TRI_IN_FEM_DEF_HPP__
50 #define __INTREPID2_HDIV_TRI_IN_FEM_DEF_HPP__
51 
54 
55 namespace Intrepid2 {
56 
57 // -------------------------------------------------------------------------------------
58 namespace Impl {
59 
60 template<EOperator opType>
61 template<typename OutputViewType,
62 typename inputViewType,
63 typename workViewType,
64 typename vinvViewType>
65 KOKKOS_INLINE_FUNCTION
66 void
67 Basis_HDIV_TRI_In_FEM::Serial<opType>::
68 getValues( /* */ OutputViewType output,
69  const inputViewType input,
70  /* */ workViewType work,
71  const vinvViewType coeffs ) {
72 
73  constexpr ordinal_type spaceDim = 2;
74  const ordinal_type
75  cardPn = coeffs.extent(0)/spaceDim,
76  card = coeffs.extent(1),
77  npts = input.extent(0);
78 
79  // compute order
80  ordinal_type order = 0;
81  for (ordinal_type p=0;p<=Parameters::MaxOrder;++p) {
82  if (card == CardinalityHDivTri(p)) {
83  order = p;
84  break;
85  }
86  }
87 
88  typedef typename Kokkos::DynRankView<typename workViewType::value_type, typename workViewType::memory_space> viewType;
89  auto vcprop = Kokkos::common_view_alloc_prop(work);
90  auto ptr = work.data();
91 
92  switch (opType) {
93  case OPERATOR_VALUE: {
94  const viewType phis(Kokkos::view_wrap(ptr, vcprop), card, npts);
95  workViewType dummyView;
96 
97  Impl::Basis_HGRAD_TRI_Cn_FEM_ORTH::
98  Serial<opType>::getValues(phis, input, dummyView, order);
99 
100  for (ordinal_type i=0;i<card;++i)
101  for (ordinal_type j=0;j<npts;++j)
102  for (ordinal_type d=0;d<spaceDim;++d) {
103  output.access(i,j,d) = 0.0;
104  for (ordinal_type k=0;k<cardPn;++k)
105  output.access(i,j,d) += coeffs(k+d*cardPn,i) * phis.access(k,j);
106  }
107  break;
108  }
109  case OPERATOR_DIV: {
110  const viewType phis(Kokkos::view_wrap(ptr, vcprop), card, npts, spaceDim);
111  ptr += card*npts*spaceDim*get_dimension_scalar(work);
112  const viewType workView(Kokkos::view_wrap(ptr, vcprop), card, npts, spaceDim+1);
113 
114  Impl::Basis_HGRAD_TRI_Cn_FEM_ORTH::
115  Serial<OPERATOR_GRAD>::getValues(phis, input, workView, order);
116 
117  for (ordinal_type i=0;i<card;++i)
118  for (ordinal_type j=0;j<npts;++j) {
119  output.access(i,j) = 0.0;
120  for (ordinal_type k=0; k<cardPn; ++k)
121  for (ordinal_type d=0; d<spaceDim; ++d)
122  output.access(i,j) += coeffs(k+d*cardPn,i)*phis.access(k,j,d);
123  }
124  break;
125  }
126  default: {
127  INTREPID2_TEST_FOR_ABORT( true,
128  ">>> ERROR (Basis_HDIV_TRI_In_FEM): Operator type not implemented");
129  }
130  }
131 }
132 
133 template<typename DT, ordinal_type numPtsPerEval,
134 typename outputValueValueType, class ...outputValueProperties,
135 typename inputPointValueType, class ...inputPointProperties,
136 typename vinvValueType, class ...vinvProperties>
137 void
138 Basis_HDIV_TRI_In_FEM::
139 getValues( /* */ Kokkos::DynRankView<outputValueValueType,outputValueProperties...> outputValues,
140  const Kokkos::DynRankView<inputPointValueType, inputPointProperties...> inputPoints,
141  const Kokkos::DynRankView<vinvValueType, vinvProperties...> coeffs,
142  const EOperator operatorType) {
143  typedef Kokkos::DynRankView<outputValueValueType,outputValueProperties...> outputValueViewType;
144  typedef Kokkos::DynRankView<inputPointValueType, inputPointProperties...> inputPointViewType;
145  typedef Kokkos::DynRankView<vinvValueType, vinvProperties...> vinvViewType;
146  typedef typename ExecSpace<typename inputPointViewType::execution_space,typename DT::execution_space>::ExecSpaceType ExecSpaceType;
147 
148  // loopSize corresponds to cardinality
149  const auto loopSizeTmp1 = (inputPoints.extent(0)/numPtsPerEval);
150  const auto loopSizeTmp2 = (inputPoints.extent(0)%numPtsPerEval != 0);
151  const auto loopSize = loopSizeTmp1 + loopSizeTmp2;
152  Kokkos::RangePolicy<ExecSpaceType,Kokkos::Schedule<Kokkos::Static> > policy(0, loopSize);
153 
154  typedef typename inputPointViewType::value_type inputPointType;
155 
156  const ordinal_type cardinality = outputValues.extent(0);
157  const ordinal_type spaceDim = 2;
158 
159  auto vcprop = Kokkos::common_view_alloc_prop(inputPoints);
160  typedef typename Kokkos::DynRankView< inputPointType, typename inputPointViewType::memory_space> workViewType;
161 
162  switch (operatorType) {
163  case OPERATOR_VALUE: {
164  workViewType work(Kokkos::view_alloc("Basis_HDIV_TRI_In_FEM::getValues::work", vcprop), cardinality, inputPoints.extent(0));
165  typedef Functor<outputValueViewType,inputPointViewType,vinvViewType, workViewType,
166  OPERATOR_VALUE,numPtsPerEval> FunctorType;
167  Kokkos::parallel_for( policy, FunctorType(outputValues, inputPoints, coeffs, work) );
168  break;
169  }
170  case OPERATOR_DIV: {
171  workViewType work(Kokkos::view_alloc("Basis_HDIV_TRI_In_FEM::getValues::work", vcprop), cardinality*(2*spaceDim+1), inputPoints.extent(0));
172  typedef Functor<outputValueViewType,inputPointViewType,vinvViewType, workViewType,
173  OPERATOR_DIV,numPtsPerEval> FunctorType;
174  Kokkos::parallel_for( policy, FunctorType(outputValues, inputPoints, coeffs, work) );
175  break;
176  }
177  default: {
178  INTREPID2_TEST_FOR_EXCEPTION( true , std::invalid_argument,
179  ">>> ERROR (Basis_HDIV_TRI_In_FEM): Operator type not implemented" );
180  }
181  }
182 }
183 }
184 
185 // -------------------------------------------------------------------------------------
186 template<typename DT, typename OT, typename PT>
188 Basis_HDIV_TRI_In_FEM( const ordinal_type order,
189  const EPointType pointType ) {
190  // Note: the only reason why equispaced can't support higher order than Parameters::MaxOrder appears to be the fact that the tags below get stored into a fixed-length array.
191  // TODO: relax the maximum order requirement by setting up tags in a different container, perhaps directly into an OrdinalTypeArray1DHost (tagView, below). (As of this writing (1/25/22), looks like other nodal bases do this in a similar way -- those should be fixed at the same time; maybe search for Parameters::MaxOrder.)
192  INTREPID2_TEST_FOR_EXCEPTION( order > Parameters::MaxOrder, std::invalid_argument, "polynomial order exceeds the max supported by this class");
193 
194  constexpr ordinal_type spaceDim = 2;
195  this->basisCardinality_ = CardinalityHDivTri(order);
196  this->basisDegree_ = order; // small n
197  this->basisCellTopology_ = shards::CellTopology(shards::getCellTopologyData<shards::Triangle<3> >() );
198  this->basisType_ = BASIS_FEM_LAGRANGIAN;
199  this->basisCoordinates_ = COORDINATES_CARTESIAN;
200  this->functionSpace_ = FUNCTION_SPACE_HDIV;
201  pointType_ = (pointType == POINTTYPE_DEFAULT) ? POINTTYPE_EQUISPACED : pointType;
202 
203  const ordinal_type card = this->basisCardinality_;
204 
205  const ordinal_type cardPn = Intrepid2::getPnCardinality<spaceDim>(order); // dim of (P_{n}) -- smaller space
206  const ordinal_type cardPnm1 = Intrepid2::getPnCardinality<spaceDim>(order-1); // dim of (P_{n-1}) -- smaller space
207  const ordinal_type cardPnm2 = Intrepid2::getPnCardinality<spaceDim>(order-2); // dim of (P_{n-2}) -- smaller space
208  const ordinal_type cardVecPn = spaceDim*cardPn; // dim of (P_{n})^2 -- larger space
209  const ordinal_type cardVecPnm1 = spaceDim*cardPnm1; // dim of (P_{n-1})^2 -- smaller space
210 
211 
212  // Basis-dependent initializations
213  constexpr ordinal_type tagSize = 4; // size of DoF tag, i.e., number of fields in the tag
214  constexpr ordinal_type maxCard = CardinalityHDivTri(Parameters::MaxOrder);
215  ordinal_type tags[maxCard][tagSize];
216 
217  // points are computed in the host and will be copied
218  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace>
219  dofCoords("Hdiv::Tri::In::dofCoords", card, spaceDim);
220 
221  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace>
222  dofCoeffs("Hdiv::Tri::In::dofCoeffs", card, spaceDim);
223 
224  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace>
225  coeffs("Hdiv::Tri::In::coeffs", cardVecPn, card);
226 
227  // first, need to project the basis for RT space onto the
228  // orthogonal basis of degree n
229  // get coefficients of PkHx
230 
231  const ordinal_type lwork = card*card;
232  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace>
233  V1("Hdiv::Tri::In::V1", cardVecPn, card);
234 
235  // basis for the space is
236  // { (phi_i,0) }_{i=0}^{cardPnm1-1} ,
237  // { (0,phi_i) }_{i=0}^{cardPnm1-1} ,
238  // { (x,y) . phi_i}_{i=cardPnm2}^{cardPnm1-1}
239  // columns of V1 are expansion of this basis in terms of the basis
240  // for P_{n}^2
241 
242  // these two loops get the first two sets of basis functions
243  for (ordinal_type i=0;i<cardPnm1;i++) {
244  V1(i,i) = 1.0;
245  V1(cardPn+i,cardPnm1+i) = 1.0;
246  }
247 
248  // now I need to integrate { (x,y) phi } against the big basis
249  // first, get a cubature rule.
251  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace> cubPoints("Hdiv::Tri::In::cubPoints", myCub.getNumPoints() , spaceDim );
252  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace> cubWeights("Hdiv::Tri::In::cubWeights", myCub.getNumPoints() );
253  myCub.getCubature( cubPoints , cubWeights );
254 
255  // tabulate the scalar orthonormal basis at cubature points
256  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace> phisAtCubPoints("Hdiv::Tri::In::phisAtCubPoints", cardPn , myCub.getNumPoints() );
257  Impl::Basis_HGRAD_TRI_Cn_FEM_ORTH::getValues<Kokkos::HostSpace::execution_space,Parameters::MaxNumPtsPerBasisEval>(typename Kokkos::HostSpace::execution_space{},
258  phisAtCubPoints,
259  cubPoints,
260  order,
261  OPERATOR_VALUE);
262 
263  // now do the integration
264  for (ordinal_type i=0;i<order;i++) {
265  for (ordinal_type j=0;j<cardPn;j++) { // int (x,y) phi_i \cdot (phi_j,phi_{j+cardPn})
266  V1(j,cardVecPnm1+i) = 0.0;
267  for (ordinal_type d=0; d< spaceDim; ++d)
268  for (ordinal_type k=0;k<myCub.getNumPoints();k++) {
269  V1(j+d*cardPn,cardVecPnm1+i) +=
270  cubWeights(k) * cubPoints(k,d)
271  * phisAtCubPoints(cardPnm2+i,k)
272  * phisAtCubPoints(j,k);
273  }
274  }
275  }
276 
277  // next, apply the RT nodes (rows) to the basis for (P_n)^2 (columns)
278  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace>
279  V2("Hdiv::Tri::In::V2", card ,cardVecPn);
280 
281  const ordinal_type numEdges = this->basisCellTopology_.getEdgeCount();
282 
283  shards::CellTopology edgeTop(shards::getCellTopologyData<shards::Line<2> >() );
284 
285  const int numPtsPerEdge = PointTools::getLatticeSize( edgeTop ,
286  order+1 ,
287  1 );
288 
289  // first numEdges * degree nodes are normals at each edge
290  // get the points on the line
291  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace> linePts("Hdiv::Tri::In::linePts", numPtsPerEdge , 1 );
292 
293  // construct lattice
294  const ordinal_type offset = 1;
295  PointTools::getLattice( linePts,
296  edgeTop,
297  order+1, offset,
298  pointType_ );
299 
300  // holds the image of the line points
301  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace> edgePts("Hdiv::Tri::In::edgePts", numPtsPerEdge , spaceDim );
302  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace> phisAtEdgePoints("Hdiv::Tri::In::phisAtEdgePoints", cardPn , numPtsPerEdge );
303  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace> edgeNormal("Hcurl::Tri::In::edgeNormal", spaceDim );
304 
305  // these are normal scaled by the appropriate edge lengths.
306  for (ordinal_type edge=0;edge<numEdges;edge++) { // loop over edges
308  edge ,
309  this->basisCellTopology_ );
310 
312  linePts ,
313  1 ,
314  edge ,
315  this->basisCellTopology_ );
316 
317  Impl::Basis_HGRAD_TRI_Cn_FEM_ORTH::getValues<Kokkos::HostSpace::execution_space,Parameters::MaxNumPtsPerBasisEval>(typename Kokkos::HostSpace::execution_space{},
318  phisAtEdgePoints,
319  edgePts,
320  order,
321  OPERATOR_VALUE);
322 
323  // loop over points (rows of V2)
324  for (ordinal_type j=0;j<numPtsPerEdge;j++) {
325 
326  const ordinal_type i_card = numPtsPerEdge*edge+j;
327 
328  // loop over orthonormal basis functions (columns of V2)
329  for (ordinal_type k=0;k<cardPn;k++) {
330  // loop over space dimension
331  for (ordinal_type l=0; l<spaceDim; l++)
332  V2(i_card,k+l*cardPn) = edgeNormal(l) * phisAtEdgePoints(k,j);
333  }
334 
335 
336  //save dof coordinates and coefficients
337  for(ordinal_type l=0; l<spaceDim; ++l) {
338  dofCoords(i_card,l) = edgePts(j,l);
339  dofCoeffs(i_card,l) = edgeNormal(l);
340  }
341 
342  tags[i_card][0] = 1; // edge dof
343  tags[i_card][1] = edge; // edge id
344  tags[i_card][2] = j; // local dof id
345  tags[i_card][3] = numPtsPerEdge; // total vert dof
346 
347  }
348 
349 
350  }
351 
352  // remaining nodes are divided into two pieces: point value of x
353  // components and point values of y components. These are
354  // evaluated at the interior of a lattice of degree + 1, For then
355  // the degree == 1 space corresponds classicaly to RT0 and so gets
356  // no internal nodes, and degree == 2 corresponds to RT1 and needs
357  // one internal node per vector component.
358  const ordinal_type numPtsPerCell = PointTools::getLatticeSize( this->basisCellTopology_ ,
359  order + 1 ,
360  1 );
361 
362  if (numPtsPerCell > 0) {
363  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace>
364  internalPoints( "Hdiv::Tri::In::internalPoints", numPtsPerCell , spaceDim );
365  PointTools::getLattice( internalPoints ,
366  this->basisCellTopology_ ,
367  order + 1 ,
368  1 ,
369  pointType_ );
370 
371  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace>
372  phisAtInternalPoints("Hdiv::Tri::In::phisAtInternalPoints", cardPn , numPtsPerCell );
373  Impl::Basis_HGRAD_TRI_Cn_FEM_ORTH::getValues<Kokkos::HostSpace::execution_space,Parameters::MaxNumPtsPerBasisEval>(typename Kokkos::HostSpace::execution_space{},
374  phisAtInternalPoints,
375  internalPoints,
376  order,
377  OPERATOR_VALUE);
378 
379  // copy values into right positions of V2
380  for (ordinal_type j=0;j<numPtsPerCell;j++) {
381 
382  const ordinal_type i_card = numEdges*order+spaceDim*j;
383 
384  for (ordinal_type k=0;k<cardPn;k++) {
385  for (ordinal_type l=0;l<spaceDim;l++) {
386  V2(i_card+l,l*cardPn+k) = phisAtInternalPoints(k,j);
387  }
388  }
389 
390  //save dof coordinates and coefficients
391  for(ordinal_type d=0; d<spaceDim; ++d) {
392  for(ordinal_type l=0; l<spaceDim; ++l) {
393  dofCoords(i_card+d,l) = internalPoints(j,l);
394  dofCoeffs(i_card+d,l) = (l==d);
395  }
396 
397  tags[i_card+d][0] = spaceDim; // elem dof
398  tags[i_card+d][1] = 0; // elem id
399  tags[i_card+d][2] = spaceDim*j+d; // local dof id
400  tags[i_card+d][3] = spaceDim*numPtsPerCell; // total vert dof
401  }
402  }
403  }
404 
405  // form Vandermonde matrix. Actually, this is the transpose of the VDM,
406  // so we transpose on copy below.
407  Kokkos::DynRankView<scalarType,Kokkos::LayoutLeft,Kokkos::HostSpace>
408  vmat("Hdiv::Tri::In::vmat", card, card),
409  work("Hdiv::Tri::In::work", lwork),
410  ipiv("Hdiv::Tri::In::ipiv", card);
411 
412  //vmat' = V2*V1;
413  for(ordinal_type i=0; i< card; ++i) {
414  for(ordinal_type j=0; j< card; ++j) {
415  scalarType s=0;
416  for(ordinal_type k=0; k< cardVecPn; ++k)
417  s += V2(i,k)*V1(k,j);
418  vmat(i,j) = s;
419  }
420  }
421 
422  ordinal_type info = 0;
423  Teuchos::LAPACK<ordinal_type,scalarType> lapack;
424 
425  lapack.GETRF(card, card,
426  vmat.data(), vmat.stride_1(),
427  (ordinal_type*)ipiv.data(),
428  &info);
429 
430  INTREPID2_TEST_FOR_EXCEPTION( info != 0,
431  std::runtime_error ,
432  ">>> ERROR: (Intrepid2::Basis_HDIV_TRI_In_FEM) lapack.GETRF returns nonzero info." );
433 
434  lapack.GETRI(card,
435  vmat.data(), vmat.stride_1(),
436  (ordinal_type*)ipiv.data(),
437  work.data(), lwork,
438  &info);
439 
440  INTREPID2_TEST_FOR_EXCEPTION( info != 0,
441  std::runtime_error ,
442  ">>> ERROR: (Intrepid2::Basis_HDIV_TRI_In_FEM) lapack.GETRI returns nonzero info." );
443 
444  for (ordinal_type i=0;i<cardVecPn;++i)
445  for (ordinal_type j=0;j<card;++j){
446  scalarType s=0;
447  for(ordinal_type k=0; k< card; ++k)
448  s += V1(i,k)*vmat(k,j);
449  coeffs(i,j) = s;
450  }
451 
452  this->coeffs_ = Kokkos::create_mirror_view(typename DT::memory_space(), coeffs);
453  Kokkos::deep_copy(this->coeffs_ , coeffs);
454 
455  this->dofCoords_ = Kokkos::create_mirror_view(typename DT::memory_space(), dofCoords);
456  Kokkos::deep_copy(this->dofCoords_, dofCoords);
457 
458  this->dofCoeffs_ = Kokkos::create_mirror_view(typename DT::memory_space(), dofCoeffs);
459  Kokkos::deep_copy(this->dofCoeffs_, dofCoeffs);
460 
461 
462  // set tags
463  {
464  // Basis-dependent initializations
465  const ordinal_type posScDim = 0; // position in the tag, counting from 0, of the subcell dim
466  const ordinal_type posScOrd = 1; // position in the tag, counting from 0, of the subcell ordinal
467  const ordinal_type posDfOrd = 2; // position in the tag, counting from 0, of DoF ordinal relative to the subcell
468 
469  OrdinalTypeArray1DHost tagView(&tags[0][0], card*tagSize);
470 
471  // Basis-independent function sets tag and enum data in tagToOrdinal_ and ordinalToTag_ arrays:
472  // tags are constructed on host
473  this->setOrdinalTagData(this->tagToOrdinal_,
474  this->ordinalToTag_,
475  tagView,
476  this->basisCardinality_,
477  tagSize,
478  posScDim,
479  posScOrd,
480  posDfOrd);
481  }
482 }
483 } // namespace Intrepid2
484 #endif
Header file for the Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH class.
virtual void getCubature(PointViewType cubPoints, weightViewType cubWeights) const override
Returns cubature points and weights (return arrays must be pre-sized/pre-allocated).
static void getLattice(Kokkos::DynRankView< pointValueType, pointProperties...> points, const shards::CellTopology cellType, const ordinal_type order, const ordinal_type offset=0, const EPointType pointType=POINTTYPE_EQUISPACED)
Computes a lattice of points of a given order on a reference simplex, quadrilateral or hexahedron (cu...
virtual ordinal_type getNumPoints() const override
Returns the number of cubature points.
static void getReferenceSideNormal(RefSideNormalViewType refSideNormal, const ordinal_type sideOrd, const shards::CellTopology parentCell)
Computes constant normal vectors to sides of 2D or 3D reference cells.
Header file for the Intrepid2::CubatureDirectTrisymPos class.
static void mapToReferenceSubcell(refSubcellViewType refSubcellPoints, const paramPointViewType paramPoints, const ordinal_type subcellDim, const ordinal_type subcellOrd, const shards::CellTopology parentCell)
Computes parameterization maps of 1- and 2-subcells of reference cells.
static constexpr ordinal_type MaxOrder
The maximum reconstruction order.
static ordinal_type getLatticeSize(const shards::CellTopology cellType, const ordinal_type order, const ordinal_type offset=0)
Computes the number of points in a lattice of a given order on a simplex (currently disabled for othe...
Basis_HDIV_TRI_In_FEM(const ordinal_type order, const EPointType pointType=POINTTYPE_EQUISPACED)
Constructor.