Intrepid2
Intrepid2_HDIV_TET_In_FEMDef.hpp
Go to the documentation of this file.
1 // @HEADER
2 // *****************************************************************************
3 // Intrepid2 Package
4 //
5 // Copyright 2007 NTESS and the Intrepid2 contributors.
6 // SPDX-License-Identifier: BSD-3-Clause
7 // *****************************************************************************
8 // @HEADER
9 
16 #ifndef __INTREPID2_HDIV_TET_IN_FEM_DEF_HPP__
17 #define __INTREPID2_HDIV_TET_IN_FEM_DEF_HPP__
18 
21 
22 namespace Intrepid2 {
23 
24 // -------------------------------------------------------------------------------------
25 
26 namespace Impl {
27 
28 template<EOperator OpType>
29 template<typename OutputViewType,
30 typename InputViewType,
31 typename WorkViewType,
32 typename VinvViewType>
33 KOKKOS_INLINE_FUNCTION
34 void
35 Basis_HDIV_TET_In_FEM::Serial<OpType>::
36 getValues( OutputViewType output,
37  const InputViewType input,
38  WorkViewType work,
39  const VinvViewType coeffs ) {
40 
41  constexpr ordinal_type spaceDim = 3;
42  const ordinal_type
43  cardPn = coeffs.extent(0)/spaceDim,
44  card = coeffs.extent(1),
45  npts = input.extent(0);
46 
47  // compute order
48  ordinal_type order = 0;
49  for (ordinal_type p=0;p<=Parameters::MaxOrder;++p) {
50  if (card == CardinalityHDivTet(p)) {
51  order = p;
52  break;
53  }
54  }
55 
56  typedef typename Kokkos::DynRankView<typename InputViewType::value_type, typename WorkViewType::memory_space> ViewType;
57  auto vcprop = Kokkos::common_view_alloc_prop(input);
58  auto ptr = work.data();
59 
60  switch (OpType) {
61  case OPERATOR_VALUE: {
62  const ViewType phis(Kokkos::view_wrap(ptr, vcprop), card, npts);
63  ViewType dummyView;
64 
65  Impl::Basis_HGRAD_TET_Cn_FEM_ORTH::
66  Serial<OpType>::getValues(phis, input, dummyView, order);
67 
68  for (ordinal_type i=0;i<card;++i)
69  for (ordinal_type j=0;j<npts;++j)
70  for (ordinal_type d=0;d<spaceDim;++d) {
71  output.access(i,j,d) = 0.0;
72  for (ordinal_type k=0;k<cardPn;++k)
73  output.access(i,j,d) += coeffs(k+d*cardPn,i) * phis.access(k,j);
74  }
75  break;
76  }
77  case OPERATOR_DIV: {
78  const ViewType phis(Kokkos::view_wrap(ptr, vcprop), card, npts, spaceDim);
79  ptr += card*npts*spaceDim*get_dimension_scalar(input);
80  const ViewType workView(Kokkos::view_wrap(ptr, vcprop), card, npts, spaceDim+1);
81 
82  Impl::Basis_HGRAD_TET_Cn_FEM_ORTH::
83  Serial<OPERATOR_GRAD>::getValues(phis, input, workView, order);
84 
85  for (ordinal_type i=0;i<card;++i)
86  for (ordinal_type j=0;j<npts;++j) {
87  output.access(i,j) = 0.0;
88  for (ordinal_type k=0; k<cardPn; ++k)
89  for (ordinal_type d=0; d<spaceDim; ++d)
90  output.access(i,j) += coeffs(k+d*cardPn,i)*phis.access(k,j,d);
91  }
92  break;
93  }
94  default: {
95  INTREPID2_TEST_FOR_ABORT( true,
96  ">>> ERROR (Basis_HDIV_TET_In_FEM): Operator type not implemented");
97  }
98  }
99 }
100 
101 template<typename DT, ordinal_type numPtsPerEval,
102 typename outputValueValueType, class ...outputValueProperties,
103 typename inputPointValueType, class ...inputPointProperties,
104 typename vinvValueType, class ...vinvProperties>
105 void
106 Basis_HDIV_TET_In_FEM::
107 getValues( Kokkos::DynRankView<outputValueValueType,outputValueProperties...> outputValues,
108  const Kokkos::DynRankView<inputPointValueType, inputPointProperties...> inputPoints,
109  const Kokkos::DynRankView<vinvValueType, vinvProperties...> coeffs,
110  const EOperator operatorType) {
111  typedef Kokkos::DynRankView<outputValueValueType,outputValueProperties...> outputValueViewType;
112  typedef Kokkos::DynRankView<inputPointValueType, inputPointProperties...> inputPointViewType;
113  typedef Kokkos::DynRankView<vinvValueType, vinvProperties...> vinvViewType;
114  typedef typename ExecSpace<typename inputPointViewType::execution_space,typename DT::execution_space>::ExecSpaceType ExecSpaceType;
115 
116  // loopSize corresponds to cardinality
117  const auto loopSizeTmp1 = (inputPoints.extent(0)/numPtsPerEval);
118  const auto loopSizeTmp2 = (inputPoints.extent(0)%numPtsPerEval != 0);
119  const auto loopSize = loopSizeTmp1 + loopSizeTmp2;
120  Kokkos::RangePolicy<ExecSpaceType,Kokkos::Schedule<Kokkos::Static> > policy(0, loopSize);
121 
122  typedef typename inputPointViewType::value_type inputPointType;
123 
124  const ordinal_type cardinality = outputValues.extent(0);
125  const ordinal_type spaceDim = 3;
126 
127  auto vcprop = Kokkos::common_view_alloc_prop(inputPoints);
128  typedef typename Kokkos::DynRankView< inputPointType, typename inputPointViewType::memory_space> workViewType;
129 
130  switch (operatorType) {
131  case OPERATOR_VALUE: {
132  workViewType work(Kokkos::view_alloc("Basis_HDIV_TET_In_FEM::getValues::work", vcprop), cardinality, inputPoints.extent(0));
133  typedef Functor<outputValueViewType,inputPointViewType,vinvViewType, workViewType,
134  OPERATOR_VALUE,numPtsPerEval> FunctorType;
135  Kokkos::parallel_for( policy, FunctorType(outputValues, inputPoints, coeffs, work) );
136  break;
137  }
138  case OPERATOR_DIV: {
139  workViewType work(Kokkos::view_alloc("Basis_HDIV_TET_In_FEM::getValues::work", vcprop), cardinality*(2*spaceDim+1), inputPoints.extent(0));
140  typedef Functor<outputValueViewType,inputPointViewType,vinvViewType, workViewType,
141  OPERATOR_DIV,numPtsPerEval> FunctorType;
142  Kokkos::parallel_for( policy, FunctorType(outputValues, inputPoints, coeffs, work) );
143  break;
144  }
145  default: {
146  INTREPID2_TEST_FOR_EXCEPTION( true , std::invalid_argument,
147  ">>> ERROR (Basis_HDIV_TET_In_FEM): Operator type not implemented" );
148  }
149  }
150 }
151 }
152 
153 // -------------------------------------------------------------------------------------
154 template<typename DT, typename OT, typename PT>
156 Basis_HDIV_TET_In_FEM( const ordinal_type order,
157  const EPointType pointType ) {
158 
159  constexpr ordinal_type spaceDim = 3;
160  this->basisCardinality_ = CardinalityHDivTet(order);
161  this->basisDegree_ = order; // small n
162  this->basisCellTopologyKey_ = shards::Tetrahedron<4>::key;
163  this->basisType_ = BASIS_FEM_LAGRANGIAN;
164  this->basisCoordinates_ = COORDINATES_CARTESIAN;
165  this->functionSpace_ = FUNCTION_SPACE_HDIV;
166  pointType_ = pointType;
167 
168  const ordinal_type card = this->basisCardinality_;
169 
170  const ordinal_type cardPn = Intrepid2::getPnCardinality<spaceDim>(order); // dim of (P_{n}) -- smaller space
171  const ordinal_type cardPnm1 = Intrepid2::getPnCardinality<spaceDim>(order-1); // dim of (P_{n-1}) -- smaller space
172  const ordinal_type cardPnm2 = Intrepid2::getPnCardinality<spaceDim>(order-2); // dim of (P_{n-2}) -- smaller space
173  const ordinal_type cardVecPn = spaceDim*cardPn; // dim of (P_{n})^3 -- larger space
174  const ordinal_type cardVecPnm1 = spaceDim*cardPnm1; // dim of (P_{n-1})^3 -- smaller space
175  const ordinal_type dim_PkH = cardPnm1 - cardPnm2;
176 
177  // Note: the only reason why equispaced can't support higher order than Parameters::MaxOrder appears to be the fact that the tags below get stored into a fixed-length array.
178  // TODO: relax the maximum order requirement by setting up tags in a different container, perhaps directly into an OrdinalTypeArray1DHost (tagView, below). (As of this writing (1/25/22), looks like other nodal bases do this in a similar way -- those should be fixed at the same time; maybe search for Parameters::MaxOrder.)
179  INTREPID2_TEST_FOR_EXCEPTION( order > Parameters::MaxOrder, std::invalid_argument, "polynomial order exceeds the max supported by this class");
180 
181  // Basis-dependent initializations
182  constexpr ordinal_type tagSize = 4; // size of DoF tag, i.e., number of fields in the tag
183  constexpr ordinal_type maxCard = CardinalityHDivTet(Parameters::MaxOrder);
184  ordinal_type tags[maxCard][tagSize];
185 
186  // points are computed in the host and will be copied
187  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace>
188  dofCoords("Hdiv::Tet::In::dofCoords", card, spaceDim);
189 
190  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace>
191  dofCoeffs("Hdiv::Tet::In::dofCoeffs", card, spaceDim);
192 
193  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace>
194  coeffs("Hdiv::Tet::In::coeffs", cardVecPn, card);
195 
196  // first, need to project the basis for RT space onto the
197  // orthogonal basis of degree n
198  // get coefficients of PkHx
199 
200  const ordinal_type lwork = card*card;
201  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace>
202  V1("Hdiv::Tet::In::V1", cardVecPn, card);
203 
204  // basis for the space is
205  // { (phi_i,0,0) }_{i=0}^{cardPnm1-1} ,
206  // { (0,phi_i,0) }_{i=0}^{cardPnm1-1} ,
207  // { (0,0,phi_i) }_{i=0}^{cardPnm1-1} ,
208  // { (x,y) . phi_i}_{i=cardPnm2}^{cardPnm1-1}
209  // columns of V1 are expansion of this basis in terms of the orthogonal basis
210  // for P_{n}^3
211 
212  // these two loops get the first two sets of basis functions
213  for (ordinal_type i=0;i<cardPnm1;i++) {
214  for (ordinal_type k=0; k<3;k++) {
215  V1(k*cardPn+i,k*cardPnm1+i) = 1.0;
216  }
217  }
218 
219  // now I need to integrate { (x,y,z) phi } against the big basis
220  // first, get a cubature rule.
222  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace> cubPoints("Hdiv::Tet::In::cubPoints", myCub.getNumPoints() , spaceDim );
223  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace> cubWeights("Hdiv::Tet::In::cubWeights", myCub.getNumPoints() );
224  myCub.getCubature( cubPoints , cubWeights );
225 
226  // tabulate the scalar orthonormal basis at cubature points
227  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace> phisAtCubPoints("Hdiv::Tet::In::phisAtCubPoints", cardPn , myCub.getNumPoints() );
228  Impl::Basis_HGRAD_TET_Cn_FEM_ORTH::getValues<Kokkos::HostSpace::execution_space,Parameters::MaxNumPtsPerBasisEval>(typename Kokkos::HostSpace::execution_space{},
229  phisAtCubPoints,
230  cubPoints,
231  order,
232  OPERATOR_VALUE);
233 
234  // now do the integration
235  for (ordinal_type i=0;i<dim_PkH;i++) {
236  for (ordinal_type j=0;j<cardPn;j++) { // int (x,y,z) phi_i \cdot (phi_j,0,0)
237  V1(j,cardVecPnm1+i) = 0.0;
238  for (ordinal_type d=0; d< spaceDim; ++d)
239  for (ordinal_type k=0;k<myCub.getNumPoints();k++) {
240  V1(j+d*cardPn,cardVecPnm1+i) +=
241  cubWeights(k) * cubPoints(k,d)
242  * phisAtCubPoints(cardPnm2+i,k)
243  * phisAtCubPoints(j,k);
244  }
245  }
246  }
247 
248  // next, apply the RT nodes (rows) to the basis for (P_n)^3 (columns)
249  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace>
250  V2("Hdiv::Tet::In::V2", card ,cardVecPn);
251 
252  const shards::CellTopology cellTopo(shards::getCellTopologyData<shards::Tetrahedron<4>>());
253  const ordinal_type numFaces = cellTopo.getFaceCount();
254 
255  shards::CellTopology faceTopo(shards::getCellTopologyData<shards::Triangle<3> >() );
256 
257  const int numPtsPerFace = PointTools::getLatticeSize( faceTopo ,
258  order+2 ,
259  1 );
260 
261  // get the points on the tetrahedron face
262  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace> triPts("Hdiv::Tet::In::triPts", numPtsPerFace , 2 );
263 
264  // construct lattice
265  const ordinal_type offset = 1;
266  PointTools::getLattice( triPts,
267  faceTopo,
268  order+2,
269  offset,
270  pointType );
271 
272  // holds the image of the tet points
273  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace> facePts("Hdiv::Tet::In::facePts", numPtsPerFace , spaceDim );
274  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace> phisAtFacePoints("Hdiv::Tet::In::phisAtFacePoints", cardPn , numPtsPerFace );
275  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace> faceNormal("Hcurl::Tet::In::faceNormal", spaceDim );
276 
277  // loop over faces
278  for (ordinal_type face=0;face<numFaces;face++) { // loop over faces
279 
280  // these are normal scaled by the appropriate face areas.
282  face ,
283  cellTopo );
284 
286  triPts ,
287  2 ,
288  face ,
289  cellTopo );
290 
291  // get phi values at face points
292  Impl::Basis_HGRAD_TET_Cn_FEM_ORTH::getValues<Kokkos::HostSpace::execution_space,Parameters::MaxNumPtsPerBasisEval>(typename Kokkos::HostSpace::execution_space{},
293  phisAtFacePoints,
294  facePts,
295  order,
296  OPERATOR_VALUE);
297 
298  // loop over points (rows of V2)
299  for (ordinal_type j=0;j<numPtsPerFace;j++) {
300 
301  const ordinal_type i_card = numPtsPerFace*face+j;
302 
303  // loop over orthonormal basis functions (columns of V2)
304  for (ordinal_type k=0;k<cardPn;k++) {
305  // loop over space dimension
306  for (ordinal_type l=0; l<spaceDim; l++)
307  V2(i_card,k+l*cardPn) = faceNormal(l) * phisAtFacePoints(k,j);
308  }
309 
310  //save dof coordinates and coefficients
311  for(ordinal_type l=0; l<spaceDim; ++l) {
312  dofCoords(i_card,l) = facePts(j,l);
313  dofCoeffs(i_card,l) = faceNormal(l);
314  }
315 
316  tags[i_card][0] = 2; // face dof
317  tags[i_card][1] = face; // face id
318  tags[i_card][2] = j; // local dof id
319  tags[i_card][3] = numPtsPerFace; // total vert dof
320 
321  }
322  }
323 
324  // remaining nodes point values of each vector component on interior
325  // points of a lattice of degree+2
326  // This way, RT0 --> degree = 1 and internal lattice has no points
327  // RT1 --> degree = 2, and internal lattice has one point (inside of quartic)
328  const ordinal_type numPtsPerCell = PointTools::getLatticeSize( cellTopo ,
329  order + 2 ,
330  1 );
331 
332  if (numPtsPerCell > 0) {
333  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace>
334  internalPoints( "Hdiv::Tet::In::internalPoints", numPtsPerCell , spaceDim );
335  PointTools::getLattice( internalPoints ,
336  cellTopo ,
337  order + 2 ,
338  1 ,
339  pointType );
340 
341  Kokkos::DynRankView<scalarType,typename DT::execution_space::array_layout,Kokkos::HostSpace>
342  phisAtInternalPoints("Hdiv::Tet::In::phisAtInternalPoints", cardPn , numPtsPerCell );
343  Impl::Basis_HGRAD_TET_Cn_FEM_ORTH::getValues<Kokkos::HostSpace::execution_space,Parameters::MaxNumPtsPerBasisEval>(typename Kokkos::HostSpace::execution_space{},
344  phisAtInternalPoints,
345  internalPoints,
346  order,
347  OPERATOR_VALUE );
348 
349  // copy values into right positions of V2
350  for (ordinal_type j=0;j<numPtsPerCell;j++) {
351 
352  const ordinal_type i_card = numFaces*numPtsPerFace+spaceDim*j;
353 
354  for (ordinal_type k=0;k<cardPn;k++) {
355  for (ordinal_type l=0;l<spaceDim;l++) {
356  V2(i_card+l,l*cardPn+k) = phisAtInternalPoints(k,j);
357  }
358  }
359 
360  //save dof coordinates and coefficients
361  for(ordinal_type d=0; d<spaceDim; ++d) {
362  for(ordinal_type l=0; l<spaceDim; ++l) {
363  dofCoords(i_card+d,l) = internalPoints(j,l);
364  dofCoeffs(i_card+d,l) = (l==d);
365  }
366 
367  tags[i_card+d][0] = spaceDim; // elem dof
368  tags[i_card+d][1] = 0; // elem id
369  tags[i_card+d][2] = spaceDim*j+d; // local dof id
370  tags[i_card+d][3] = spaceDim*numPtsPerCell; // total vert dof
371  }
372  }
373  }
374 
375  // form Vandermonde matrix. Actually, this is the transpose of the VDM,
376  // so we transpose on copy below.
377  Kokkos::DynRankView<scalarType,Kokkos::LayoutLeft,Kokkos::HostSpace>
378  vmat("Hdiv::Tet::In::vmat", card, card),
379  work("Hdiv::Tet::In::work", lwork),
380  ipiv("Hdiv::Tet::In::ipiv", card);
381 
382  //vmat' = V2*V1;
383  for(ordinal_type i=0; i< card; ++i) {
384  for(ordinal_type j=0; j< card; ++j) {
385  scalarType s=0;
386  for(ordinal_type k=0; k< cardVecPn; ++k)
387  s += V2(i,k)*V1(k,j);
388  vmat(i,j) = s;
389  }
390  }
391 
392  ordinal_type info = 0;
393  Teuchos::LAPACK<ordinal_type,scalarType> lapack;
394 
395  lapack.GETRF(card, card,
396  vmat.data(), vmat.stride_1(),
397  (ordinal_type*)ipiv.data(),
398  &info);
399 
400  INTREPID2_TEST_FOR_EXCEPTION( info != 0,
401  std::runtime_error ,
402  ">>> ERROR: (Intrepid2::Basis_HDIV_TET_In_FEM) lapack.GETRF returns nonzero info." );
403 
404  lapack.GETRI(card,
405  vmat.data(), vmat.stride_1(),
406  (ordinal_type*)ipiv.data(),
407  work.data(), lwork,
408  &info);
409 
410  INTREPID2_TEST_FOR_EXCEPTION( info != 0,
411  std::runtime_error ,
412  ">>> ERROR: (Intrepid2::Basis_HDIV_TET_In_FEM) lapack.GETRI returns nonzero info." );
413 
414  for (ordinal_type i=0;i<cardVecPn;++i)
415  for (ordinal_type j=0;j<card;++j){
416  scalarType s=0;
417  for(ordinal_type k=0; k< card; ++k)
418  s += V1(i,k)*vmat(k,j);
419  coeffs(i,j) = s;
420  }
421 
422  this->coeffs_ = Kokkos::create_mirror_view(typename DT::memory_space(), coeffs);
423  Kokkos::deep_copy(this->coeffs_ , coeffs);
424 
425  this->dofCoords_ = Kokkos::create_mirror_view(typename DT::memory_space(), dofCoords);
426  Kokkos::deep_copy(this->dofCoords_, dofCoords);
427 
428  this->dofCoeffs_ = Kokkos::create_mirror_view(typename DT::memory_space(), dofCoeffs);
429  Kokkos::deep_copy(this->dofCoeffs_, dofCoeffs);
430 
431 
432  // set tags
433  {
434  // Basis-dependent initializations
435  const ordinal_type posScDim = 0; // position in the tag, counting from 0, of the subcell dim
436  const ordinal_type posScOrd = 1; // position in the tag, counting from 0, of the subcell ordinal
437  const ordinal_type posDfOrd = 2; // position in the tag, counting from 0, of DoF ordinal relative to the subcell
438 
439  OrdinalTypeArray1DHost tagView(&tags[0][0], card*tagSize);
440 
441  // Basis-independent function sets tag and enum data in tagToOrdinal_ and ordinalToTag_ arrays:
442  // tags are constructed on host
443  this->setOrdinalTagData(this->tagToOrdinal_,
444  this->ordinalToTag_,
445  tagView,
446  this->basisCardinality_,
447  tagSize,
448  posScDim,
449  posScOrd,
450  posDfOrd);
451  }
452 }
453 
454 template<typename DT, typename OT, typename PT>
455 void
457  ordinal_type& perTeamSpaceSize,
458  ordinal_type& perThreadSpaceSize,
459  const PointViewType inputPoints,
460  const EOperator operatorType) const {
461  perTeamSpaceSize = 0;
462  ordinal_type scalarWorkViewExtent = (operatorType == OPERATOR_VALUE) ? this->basisCardinality_ : 7*this->basisCardinality_;
463  perThreadSpaceSize = scalarWorkViewExtent*get_dimension_scalar(inputPoints)*sizeof(typename BasisBase::scalarType);
464 }
465 
466 template<typename DT, typename OT, typename PT>
467 KOKKOS_INLINE_FUNCTION
468 void
469 Basis_HDIV_TET_In_FEM<DT,OT,PT>::getValues(
470  OutputViewType outputValues,
471  const PointViewType inputPoints,
472  const EOperator operatorType,
473  const typename Kokkos::TeamPolicy<typename DT::execution_space>::member_type& team_member,
474  const typename DT::execution_space::scratch_memory_space & scratchStorage,
475  const ordinal_type subcellDim,
476  const ordinal_type subcellOrdinal) const {
477 
478  INTREPID2_TEST_FOR_ABORT( !((subcellDim == -1) && (subcellOrdinal == -1)),
479  ">>> ERROR: (Intrepid2::Basis_HDIV_TET_In_FEM::getValues), The capability of selecting subsets of basis functions has not been implemented yet.");
480 
481  const int numPoints = inputPoints.extent(0);
482  using ScalarType = typename ScalarTraits<typename PointViewType::value_type>::scalar_type;
483  using WorkViewType = Kokkos::DynRankView< ScalarType,typename DT::execution_space::scratch_memory_space,Kokkos::MemoryTraits<Kokkos::Unmanaged> >;
484  ordinal_type scalarSizePerPoint = (operatorType == OPERATOR_VALUE) ? this->basisCardinality_ : 7*this->basisCardinality_;
485  ordinal_type sizePerPoint = scalarSizePerPoint*get_dimension_scalar(inputPoints);
486  WorkViewType workView(scratchStorage, sizePerPoint*team_member.team_size());
487  using range_type = Kokkos::pair<ordinal_type,ordinal_type>;
488 
489  switch(operatorType) {
490  case OPERATOR_VALUE:
491  Kokkos::parallel_for (Kokkos::TeamThreadRange (team_member, numPoints), [=, &coeffs_ = this->coeffs_] (ordinal_type& pt) {
492  auto output = Kokkos::subview( outputValues, Kokkos::ALL(), range_type (pt,pt+1), Kokkos::ALL() );
493  const auto input = Kokkos::subview( inputPoints, range_type(pt, pt+1), Kokkos::ALL() );
494  WorkViewType work(workView.data() + sizePerPoint*team_member.team_rank(), sizePerPoint);
495  Impl::Basis_HDIV_TET_In_FEM::Serial<OPERATOR_VALUE>::getValues( output, input, work, coeffs_ );
496  });
497  break;
498  case OPERATOR_DIV:
499  Kokkos::parallel_for (Kokkos::TeamThreadRange (team_member, numPoints), [=, &coeffs_ = this->coeffs_] (ordinal_type& pt) {
500  auto output = Kokkos::subview( outputValues, Kokkos::ALL(), range_type(pt,pt+1), Kokkos::ALL() );
501  const auto input = Kokkos::subview( inputPoints, range_type(pt,pt+1), Kokkos::ALL() );
502  WorkViewType work(workView.data() + sizePerPoint*team_member.team_rank(), sizePerPoint);
503  Impl::Basis_HDIV_TET_In_FEM::Serial<OPERATOR_DIV>::getValues( output, input, work, coeffs_ );
504  });
505  break;
506  default: {
507  INTREPID2_TEST_FOR_ABORT( true,
508  ">>> ERROR (Basis_HDIV_TET_In_FEM): getValues not implemented for this operator");
509  }
510  }
511 }
512 } // namespace Intrepid2
513 #endif
virtual void getCubature(PointViewType cubPoints, weightViewType cubWeights) const override
Returns cubature points and weights (return arrays must be pre-sized/pre-allocated).
static void getLattice(Kokkos::DynRankView< pointValueType, pointProperties...> points, const shards::CellTopology cellType, const ordinal_type order, const ordinal_type offset=0, const EPointType pointType=POINTTYPE_EQUISPACED)
Computes a lattice of points of a given order on a reference simplex, quadrilateral or hexahedron (cu...
virtual ordinal_type getNumPoints() const override
Returns the number of cubature points.
static void getReferenceSideNormal(RefSideNormalViewType refSideNormal, const ordinal_type sideOrd, const shards::CellTopology parentCell)
Computes constant normal vectors to sides of 2D or 3D reference cells.
Implementation of the default H(div)-compatible Raviart-Thomas basis of arbitrary degree on Tetrahedr...
Header file for the Intrepid2::CubatureDirectTetDefault class.
static void mapToReferenceSubcell(refSubcellViewType refSubcellPoints, const paramPointViewType paramPoints, const ordinal_type subcellDim, const ordinal_type subcellOrd, const shards::CellTopology parentCell)
Computes parameterization maps of 1- and 2-subcells of reference cells.
Defines direct integration rules on a tetrahedron.
Basis_HDIV_TET_In_FEM(const ordinal_type order, const EPointType pointType=POINTTYPE_EQUISPACED)
Constructor.
Header file for the Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH class.
static constexpr ordinal_type MaxOrder
The maximum reconstruction order.
static ordinal_type getLatticeSize(const shards::CellTopology cellType, const ordinal_type order, const ordinal_type offset=0)
Computes the number of points in a lattice of a given order on a simplex (currently disabled for othe...