Tempus  Version of the Day
Time Integration
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
Tempus::StepperIMEX_RK_Partition< Scalar > Class Template Reference

Partitioned Implicit-Explicit Runge-Kutta (IMEX-RK) time stepper. More...

#include <Tempus_StepperIMEX_RK_Partition_decl.hpp>

Inheritance diagram for Tempus::StepperIMEX_RK_Partition< Scalar >:
Tempus::StepperImplicit< Scalar > Tempus::Stepper< Scalar >

Public Member Functions

 StepperIMEX_RK_Partition ()
 Default constructor. More...
 
 StepperIMEX_RK_Partition (const Teuchos::RCP< const Thyra::ModelEvaluator< Scalar > > &appModel, const Teuchos::RCP< StepperObserver< Scalar > > &obs, const Teuchos::RCP< Thyra::NonlinearSolverBase< Scalar > > &solver, bool useFSAL, std::string ICConsistency, bool ICConsistencyCheck, bool zeroInitialGuess, std::string stepperType, Teuchos::RCP< const RKButcherTableau< Scalar > > explicitTableau, Teuchos::RCP< const RKButcherTableau< Scalar > > implicitTableau, Scalar order)
 Constructor to specialize Stepper parameters. More...
 
virtual Scalar getAlpha (const Scalar dt) const
 Return alpha = d(xDot)/dx. More...
 
virtual Scalar getBeta (const Scalar) const
 Return beta = d(x)/dx. More...
 
Teuchos::RCP< const
Teuchos::ParameterList > 
getValidParameters () const
 
void evalImplicitModelExplicitly (const Teuchos::RCP< const Thyra::VectorBase< Scalar > > &X, const Teuchos::RCP< const Thyra::VectorBase< Scalar > > &Y, Scalar time, Scalar stepSize, Scalar stageNumber, const Teuchos::RCP< Thyra::VectorBase< Scalar > > &G) const
 
void evalExplicitModel (const Teuchos::RCP< const Thyra::VectorBase< Scalar > > &X, Scalar time, Scalar stepSize, Scalar stageNumber, const Teuchos::RCP< Thyra::VectorBase< Scalar > > &F) const
 
void setOrder (Scalar order)
 
Basic stepper methods
virtual void setTableaus (std::string stepperType="", Teuchos::RCP< const RKButcherTableau< Scalar > > explicitTableau=Teuchos::null, Teuchos::RCP< const RKButcherTableau< Scalar > > implicitTableau=Teuchos::null)
 Set both the explicit and implicit tableau from ParameterList. More...
 
virtual void setExplicitTableau (Teuchos::RCP< const RKButcherTableau< Scalar > > explicitTableau)
 Set the explicit tableau from tableau. More...
 
virtual void setImplicitTableau (Teuchos::RCP< const RKButcherTableau< Scalar > > implicitTableau)
 Set the implicit tableau from tableau. More...
 
virtual void setModel (const Teuchos::RCP< const Thyra::ModelEvaluator< Scalar > > &appModel)
 
virtual Teuchos::RCP< const
Thyra::ModelEvaluator< Scalar > > 
getModel ()
 
virtual void setModelPair (const Teuchos::RCP< WrapperModelEvaluatorPairPartIMEX_Basic< Scalar > > &modelPair)
 Create WrapperModelPairIMEX from user-supplied ModelEvaluator pair. More...
 
virtual void setModelPair (const Teuchos::RCP< const Thyra::ModelEvaluator< Scalar > > &explicitModel, const Teuchos::RCP< const Thyra::ModelEvaluator< Scalar > > &implicitModel)
 Create WrapperModelPairIMEX from explicit/implicit ModelEvaluators. More...
 
virtual void setObserver (Teuchos::RCP< StepperObserver< Scalar > > obs=Teuchos::null)
 Set Observer. More...
 
virtual Teuchos::RCP
< StepperObserver< Scalar > > 
getObserver () const
 Get Observer. More...
 
virtual void initialize ()
 Initialize during construction and after changing input parameters. More...
 
virtual void setInitialConditions (const Teuchos::RCP< SolutionHistory< Scalar > > &solutionHistory)
 Set the initial conditions and make them consistent. More...
 
virtual void takeStep (const Teuchos::RCP< SolutionHistory< Scalar > > &solutionHistory)
 Take the specified timestep, dt, and return true if successful. More...
 
virtual Teuchos::RCP
< Tempus::StepperState< Scalar > > 
getDefaultStepperState ()
 Provide a StepperState to the SolutionState. This Stepper does not have any special state data, so just provide the base class StepperState with the Stepper description. This can be checked to ensure that the input StepperState can be used by this Stepper. More...
 
virtual Scalar getOrder () const
 
virtual Scalar getOrderMin () const
 
virtual Scalar getOrderMax () const
 
virtual bool isExplicit () const
 
virtual bool isImplicit () const
 
virtual bool isExplicitImplicit () const
 
virtual bool isOneStepMethod () const
 
virtual bool isMultiStepMethod () const
 
virtual OrderODE getOrderODE () const
 
Overridden from Teuchos::Describable
virtual void describe (Teuchos::FancyOStream &out, const Teuchos::EVerbosityLevel verbLevel) const
 
- Public Member Functions inherited from Tempus::StepperImplicit< Scalar >
virtual void setNonConstModel (const Teuchos::RCP< Thyra::ModelEvaluator< Scalar > > &appModel)
 
virtual Teuchos::RCP< const
WrapperModelEvaluator< Scalar > > 
getWrapperModel ()
 
virtual void setSolver (Teuchos::RCP< Thyra::NonlinearSolverBase< Scalar > > solver=Teuchos::null)
 Set solver. More...
 
virtual Teuchos::RCP
< Thyra::NonlinearSolverBase
< Scalar > > 
getSolver () const
 Get solver. More...
 
const Thyra::SolveStatus< Scalar > solveImplicitODE (const Teuchos::RCP< Thyra::VectorBase< Scalar > > &x)
 Solve problem using x in-place. (Needs to be deprecated!) More...
 
const Thyra::SolveStatus< Scalar > solveImplicitODE (const Teuchos::RCP< Thyra::VectorBase< Scalar > > &x, const Teuchos::RCP< Thyra::VectorBase< Scalar > > &xDot, const Scalar time, const Teuchos::RCP< ImplicitODEParameters< Scalar > > &p)
 Solve implicit ODE, f(x, xDot, t, p) = 0. More...
 
void evaluateImplicitODE (Teuchos::RCP< Thyra::VectorBase< Scalar > > &f, const Teuchos::RCP< Thyra::VectorBase< Scalar > > &x, const Teuchos::RCP< Thyra::VectorBase< Scalar > > &xDot, const Scalar time, const Teuchos::RCP< ImplicitODEParameters< Scalar > > &p)
 Evaluate implicit ODE residual, f(x, xDot, t, p). More...
 
virtual void setInitialGuess (Teuchos::RCP< const Thyra::VectorBase< Scalar > > initial_guess)
 Pass initial guess to Newton solver (only relevant for implicit solvers) More...
 
virtual void setZeroInitialGuess (bool zIG)
 Set parameter so that the initial guess is set to zero (=True) or use last timestep (=False). More...
 
virtual bool getZeroInitialGuess () const
 
virtual Scalar getInitTimeStep (const Teuchos::RCP< SolutionHistory< Scalar > > &) const
 
virtual void setStepperXDot (Teuchos::RCP< Thyra::VectorBase< Scalar > > xDot)
 Set xDot for Stepper storage. More...
 
virtual Teuchos::RCP
< Thyra::VectorBase< Scalar > > 
getStepperXDot (Teuchos::RCP< SolutionState< Scalar > > state)
 Get xDot from SolutionState or Stepper storage. More...
 
virtual Teuchos::RCP
< Thyra::VectorBase< Scalar > > 
getStepperXDotDot (Teuchos::RCP< SolutionState< Scalar > > state)
 Get xDotDot from SolutionState or Stepper storage. More...
 
- Public Member Functions inherited from Tempus::Stepper< Scalar >
void setStepperType (std::string s)
 
std::string getStepperType () const
 
void setUseFSAL (bool a)
 
bool getUseFSAL () const
 
virtual bool getUseFSALDefault () const
 
void setICConsistency (std::string s)
 
std::string getICConsistency () const
 
virtual std::string getICConsistencyDefault () const
 
void setICConsistencyCheck (bool c)
 
bool getICConsistencyCheck () const
 
virtual bool getICConsistencyCheckDefault () const
 
virtual std::string description () const
 
virtual void createSubSteppers (std::vector< Teuchos::RCP< const Thyra::ModelEvaluator< Scalar > > >)
 

Protected Attributes

Teuchos::RCP< const
RKButcherTableau< Scalar > > 
explicitTableau_
 
Teuchos::RCP< const
RKButcherTableau< Scalar > > 
implicitTableau_
 
Scalar order_
 
Teuchos::RCP
< Thyra::VectorBase< Scalar > > 
stageZ_
 
std::vector< Teuchos::RCP
< Thyra::VectorBase< Scalar > > > 
stageF_
 
std::vector< Teuchos::RCP
< Thyra::VectorBase< Scalar > > > 
stageGx_
 
Teuchos::RCP
< Thyra::VectorBase< Scalar > > 
xTilde_
 
Teuchos::RCP
< StepperRKObserverComposite
< Scalar > > 
stepperObserver_
 
- Protected Attributes inherited from Tempus::StepperImplicit< Scalar >
Teuchos::RCP
< WrapperModelEvaluator
< Scalar > > 
wrapperModel_
 
Teuchos::RCP
< Thyra::NonlinearSolverBase
< Scalar > > 
solver_
 
Teuchos::RCP< const
Thyra::VectorBase< Scalar > > 
initial_guess_
 
bool zeroInitialGuess_
 
Teuchos::RCP< StepperObserver
< Scalar > > 
stepperObserver_
 
Teuchos::RCP
< Thyra::VectorBase< Scalar > > 
stepperXDot_
 
Teuchos::RCP
< Thyra::VectorBase< Scalar > > 
stepperXDotDot_
 

Detailed Description

template<class Scalar>
class Tempus::StepperIMEX_RK_Partition< Scalar >

Partitioned Implicit-Explicit Runge-Kutta (IMEX-RK) time stepper.

Partitioned IMEX-RK is similar to the IMEX-RK (StepperIMEX_RK), except a portion of the solution only requires explicit integration, and should not be part of the implicit solution to reduce computational costs. Again our ODE can be written as

\begin{eqnarray*} M(z,t)\, \dot{z} + G(z,t) + F(z,t) & = & 0, \\ \mathcal{G}(\dot{z},z,t) + F(z,t) & = & 0, \end{eqnarray*}

but now

\[ z =\left\{\begin{array}{c} y\\ x \end{array}\right\},\; F(z,t)=\left\{\begin{array}{c} F^y(x,y,t)\\ F^x(x,y,t)\end{array}\right\}, \mbox{ and } G(z,t)=\left\{\begin{array}{c} 0\\ G^x(x,y,t) \end{array}\right\} \]

where $z$ is the product vector of $y$ and $x$, $F(z,t)$ is still the "slow" physics (and evolved explicitly), and $G(z,t)$ is still the "fast" physics (and evolved implicitly), but a portion of the solution vector, $y$, is "explicit-only" and is only evolved by $F^y(x,y,t)$, while $x$ is the Implicit/Explicit (IMEX) solution vector, and is evolved explicitly by $F^x(x,y,t)$ evolved implicitly by $G^x(x,y,t)$. Note we can expand this to explicitly show all the terms as

\begin{eqnarray*} & & M^y(x,y,t)\: \dot{y} + F^y(x,y,t) = 0, \\ & & M^x(x,y,t)\: \dot{x} + F^x(x,y,t) + G^x(x,y,t) = 0, \\ \end{eqnarray*}

or

\[ \left\{ \begin{array}{c} \dot{y} \\ \dot{x} \end{array}\right\} + \left\{ \begin{array}{c} f^y \\ f^x \end{array}\right\} + \left\{ \begin{array}{c} 0 \\ g^x \end{array}\right\} = 0 \]

where $f^y(x,y,t) = M^y(x,y,t)^{-1}\, F^y(x,y,t)$, $f^x(x,y,t) = M^x(x,y,t)^{-1}\, F^x(x,y,t)$, and $g^x(x,y,t) = M^x(x,y,t)^{-1}\, G^x(x,y,t)$, or

\[ \dot{z} + f(x,y,t) + g(x,y,t) = 0, \]

where $f(x,y,t) = M(x,y,t)^{-1}\, F(x,y,t)$, and $g(x,y,t) = M(x,y,t)^{-1}\, G(x,y,t)$. Using Butcher tableaus for the explicit terms

\[ \begin{array}{c|c} \hat{c} & \hat{A} \\ \hline & \hat{b}^T \end{array} \;\;\;\; \mbox{ and for implicit terms } \;\;\;\; \begin{array}{c|c} c & A \\ \hline & b^T \end{array}, \]

the basic scheme for this partitioned, $s$-stage, IMEX-RK is

\[ \begin{array}{rcll} Z_i & = & Z_{n-1} - \Delta t \sum_{j=1}^{i-1} \hat{a}_{ij}\; f(Z_j,\hat{t}_j) - \Delta t \sum_{j=1}^i a_{ij}\; g(Z_j, t_j) & \mbox{for } i=1\ldots s, \\ z_n & = & z_{n-1} - \Delta t \sum_{i=1}^s \left[ \hat{b}_i\; f(Z_i,\hat{t}_i) + b_i\; g(Z_i, t_i) \right] & \end{array} \]

or expanded

\[ \begin{array}{rcll} Y_i & = & y_{n-1} - \Delta t \sum_{j=1}^{i-1} \hat{a}_{ij}\; f^y(Z_j,\hat{t}_j) & \mbox{for } i=1\ldots s,\\ X_i & = & x_{n-1} - \Delta t \sum_{j=1}^{i-1} \hat{a}_{ij}\; f^x(Z_j,\hat{t}_j) - \Delta t \sum_{j=1}^i a_{ij}\; g^x(Z_j, t_j) & \mbox{for } i=1\ldots s, \\ y_n & = & y_{n-1} - \Delta t \sum_{i=1}^s \hat{b}_{i}\; f^y(X_i,Y_i,\hat{t}_i) & \\ x_n & = & x_{n-1} - \Delta t \sum_{i=1}^s \left[ \hat{b}_i\; f^x(Z_i,\hat{t}_i) + b_i\; g^x(Z_i, t_i) \right] & \end{array} \]

where $\hat{t}_i = t_{n-1}+\hat{c}_i\Delta t$ and $t_i = t_{n-1}+c_i\Delta t$.

For iterative solvers, it is useful to write the stage solutions as

\[ Z_i = \tilde{Z} - a_{ii} \Delta t\, g(Z_i,t_i) \]

or expanded as

\[ \left\{ \begin{array}{c} Y_i \\ X_i \end{array}\right\} = \left\{ \begin{array}{c} \tilde{Y} \\ \tilde{X}_i \end{array}\right\} - a_{ii} \Delta t \left\{ \begin{array}{c} 0 \\ g^x(Z_i,t_i) \end{array}\right\} \]

where

\begin{eqnarray*} \tilde{Z} & = & z_{n-1} - \Delta t \sum_{j=1}^{i-1} \left[\hat{a}_{ij}\, f(Z_j,\hat{t}_j) + a_{ij}\, g(Z_j, t_j)\right] \\ \tilde{Y} & = & y_{n-1} - \Delta t \sum_{j=1}^{i-1} \left[\hat{a}_{ij}\, f^y(Z_j,\hat{t}_j)\right] \\ \tilde{X} & = & x_{n-1} - \Delta t \sum_{j=1}^{i-1} \left[\hat{a}_{ij}\, f^x(Z_j,\hat{t}_j) +a_{ij}\, g^x(Z_j,t_j)\right] \\ \end{eqnarray*}

and note that $Y_i = \tilde{Y}$. Rearranging to solve for the implicit term

\begin{eqnarray*} g (Z_i,t_i) & = & - \frac{Z_i - \tilde{Z}}{a_{ii} \Delta t} \\ g^x(Z_i,t_i) & = & - \frac{X_i - \tilde{X}}{a_{ii} \Delta t} \end{eqnarray*}

We additionally need the time derivative at each stage for the implicit solve. Let us define the following time derivative for $x$ portion of the solution

\[ \dot{X}_i(X_i,Y_i,t_i) + f^x(X_i,Y_i,t_i) + g^x(X_i,Y_i,t_i) = 0 \]

where we split $Z_i$ arguments into $X_i$ and $Y_i$ to emphasize that $X_i$ is the solution for the implicit solve and $Y_i$ are parameters in this set of equations. The above time derivative, $\dot{X}_i$, is NOT likely the same as the real time derivative, $\dot{x}(x(t_i), y(t_i), t_i)$, unless $\hat{c}_i = c_i \rightarrow \hat{t}_i = t_i$ (Reasoning: $x(t_i) \neq X_i$ and $y(t_i) \neq Y_i$ unless $\hat{t}_i = t_i$). Also note that the explicit term, $f^x(X_i,Y_i,t_i)$, is evaluated at the implicit stage time, $t_i$.

We can form the time derivative

\begin{eqnarray*} \dot{X}(X_i,Y_i,t_i) & = & - g^x(X_i,Y_i,t_i) - f^x(X_i,Y_i,t_i) \\ \dot{X}(X_i,Y_i,t_i) & = & \frac{X_i - \tilde{X}}{a_{ii} \Delta t} - f^x(X_i,Y_i,t_i) \\ \end{eqnarray*}

Returning to the governing equation for the IMEX solution vector, $X_i$

\begin{eqnarray*} M^x(X_i,Y_i,t_i)\, \dot{X}(X_i,Y_i,t_i) + F^x(X_i,Y_i,t_i) + G^x(X_i,Y_i,t_i) & = & 0 \\ M^x(X_i,Y_i,t_i)\, \left[ \frac{X_i - \tilde{X}}{a_{ii} \Delta t} - f^x(X_i,Y_i,t_i) \right] + F^x(X_i,Y_i,t_i) + G^x(X_i,Y_i,t_i) & = & 0 \\ M^x(X_i,Y_i,t_i)\, \left[ \frac{X_i - \tilde{X}}{a_{ii} \Delta t} \right] + G(X_i,Y_i,t_i) & = & 0 \\ \end{eqnarray*}

Recall $\mathcal{G}^x(\dot{x},x,y,t) = M^x(x,y,t)\,\dot{x} + G^x(x,y,t)$ and if we define a pseudo time derivative, which is equivalent to the time derivative for the implicit solve,

\[ \tilde{\dot{X}} = \frac{X_i - \tilde{X}}{a_{ii} \Delta t}, \]

we can write

\[ \mathcal{G}^x(\tilde{\dot{X}},X_i,Y_i,t_i) = M^x(X_i,Y_i,t_i)\, \tilde{\dot{X}} + G^x(X_i,Y_i,t_i) = 0 \]

For general DIRK methods, we need to also handle the case when $a_{ii}=0$. The IMEX stage values can be simply evaluated similiar to the "explicit-only" stage values, e.g.,

\[ X_i = \tilde{X} = x_{n-1} - \Delta t\,\sum_{j=1}^{i-1} \left( \hat{a}_{ij}\, f^x_j + a_{ij}\, g^x_j \right) \]

and then we can simply evaluate

\begin{eqnarray*} f_i & = & f (Z_i,\hat{t}_i) \\ g^x_i & = & g^x(X_i,Y_i, t_i) \end{eqnarray*}

We can then form the time derivative as

\[ \dot{X}_i = - g^x(X_i,Y_i,t_i) - f^x(X_i,Y_i,t_i) \]

but again note that the explicit term, $f^x(X_i,Y_i,t_i)$, is evaluated at the implicit stage time, $t_i$.

Partitioned IMEX-RK Algorithm The single-timestep algorithm for the partitioned IMEX-RK is

  • $Z_1 \leftarrow z_{n-1}$ (Recall $Z_i = \{Y_i,X_i\}^T$)
  • for $i = 1 \ldots s$ do
    • $Y_i = y_{n-1} -\Delta t \sum_{j=1}^{i-1} \hat{a}_{ij}\;f^y_j$
    • $\tilde{X} \leftarrow x_{n-1} - \Delta t\,\sum_{j=1}^{i-1} \left[ \hat{a}_{ij}\, f^x_j + a_{ij}\, g^x_j \right] $
    • if $a_{ii} = 0$
      • $X_i \leftarrow \tilde{X}$
      • $g^x_i \leftarrow g^x(X_i,Y_i,t_i)$
    • else
      • Define $\tilde{\dot{X}}(X_i,Y_i,t_i) = \frac{X_i-\tilde{X}}{a_{ii} \Delta t}$
      • Solve $\mathcal{G}^x(\tilde{\dot{X}},X_i,Y_i,t_i) = 0$ for $X_i$ where $Y_i$ are known parameters
      • $g^x_i \leftarrow - \tilde{\dot{X}}$
    • $f_i \leftarrow f(Z_i,\hat{t}_i)$
  • end for
  • $z_n = z_{n-1} - \Delta t\,\sum_{i=1}^{s}\hat{b}_i\, f_i$
  • $x_n \mathrel{+{=}} - \Delta t\,\sum_{i=1}^{s} b_i\, g^x_i$

The First-Step-As-Last (FSAL) principle is not valid for IMEX RK Partition. The default is to set useFSAL=false, and useFSAL=true will result in an error.

References

  1. Shadid, Cyr, Pawlowski, Widley, Scovazzi, Zeng, Phillips, Conde, Chuadhry, Hensinger, Fischer, Robinson, Rider, Niederhaus, Sanchez, "Towards an IMEX Monolithic ALE Method with Integrated UQ for Multiphysics Shock-hydro", SAND2016-11353, 2016, pp. 21-28.
  2. Cyr, "IMEX Lagrangian Methods", SAND2015-3745C.

Definition at line 227 of file Tempus_StepperIMEX_RK_Partition_decl.hpp.

Constructor & Destructor Documentation

template<class Scalar >
Tempus::StepperIMEX_RK_Partition< Scalar >::StepperIMEX_RK_Partition ( )

Default constructor.

Requires subsequent setModel(), setSolver() and initialize() calls before calling takeStep().

Definition at line 27 of file Tempus_StepperIMEX_RK_Partition_impl.hpp.

template<class Scalar >
Tempus::StepperIMEX_RK_Partition< Scalar >::StepperIMEX_RK_Partition ( const Teuchos::RCP< const Thyra::ModelEvaluator< Scalar > > &  appModel,
const Teuchos::RCP< StepperObserver< Scalar > > &  obs,
const Teuchos::RCP< Thyra::NonlinearSolverBase< Scalar > > &  solver,
bool  useFSAL,
std::string  ICConsistency,
bool  ICConsistencyCheck,
bool  zeroInitialGuess,
std::string  stepperType,
Teuchos::RCP< const RKButcherTableau< Scalar > >  explicitTableau,
Teuchos::RCP< const RKButcherTableau< Scalar > >  implicitTableau,
Scalar  order 
)

Constructor to specialize Stepper parameters.

Definition at line 41 of file Tempus_StepperIMEX_RK_Partition_impl.hpp.

Member Function Documentation

template<class Scalar >
void Tempus::StepperIMEX_RK_Partition< Scalar >::describe ( Teuchos::FancyOStream &  out,
const Teuchos::EVerbosityLevel  verbLevel 
) const
virtual

Definition at line 680 of file Tempus_StepperIMEX_RK_Partition_impl.hpp.

template<typename Scalar >
void Tempus::StepperIMEX_RK_Partition< Scalar >::evalExplicitModel ( const Teuchos::RCP< const Thyra::VectorBase< Scalar > > &  X,
Scalar  time,
Scalar  stepSize,
Scalar  stageNumber,
const Teuchos::RCP< Thyra::VectorBase< Scalar > > &  F 
) const

Definition at line 476 of file Tempus_StepperIMEX_RK_Partition_impl.hpp.

template<typename Scalar >
void Tempus::StepperIMEX_RK_Partition< Scalar >::evalImplicitModelExplicitly ( const Teuchos::RCP< const Thyra::VectorBase< Scalar > > &  X,
const Teuchos::RCP< const Thyra::VectorBase< Scalar > > &  Y,
Scalar  time,
Scalar  stepSize,
Scalar  stageNumber,
const Teuchos::RCP< Thyra::VectorBase< Scalar > > &  G 
) const

Definition at line 441 of file Tempus_StepperIMEX_RK_Partition_impl.hpp.

template<class Scalar >
virtual Scalar Tempus::StepperIMEX_RK_Partition< Scalar >::getAlpha ( const Scalar  dt) const
inlinevirtual

Return alpha = d(xDot)/dx.

Implements Tempus::StepperImplicit< Scalar >.

Definition at line 314 of file Tempus_StepperIMEX_RK_Partition_decl.hpp.

template<class Scalar >
virtual Scalar Tempus::StepperIMEX_RK_Partition< Scalar >::getBeta ( const Scalar  ) const
inlinevirtual

Return beta = d(x)/dx.

Implements Tempus::StepperImplicit< Scalar >.

Definition at line 320 of file Tempus_StepperIMEX_RK_Partition_decl.hpp.

template<class Scalar >
Teuchos::RCP< Tempus::StepperState< Scalar > > Tempus::StepperIMEX_RK_Partition< Scalar >::getDefaultStepperState ( )
virtual

Provide a StepperState to the SolutionState. This Stepper does not have any special state data, so just provide the base class StepperState with the Stepper description. This can be checked to ensure that the input StepperState can be used by this Stepper.

Implements Tempus::Stepper< Scalar >.

Definition at line 671 of file Tempus_StepperIMEX_RK_Partition_impl.hpp.

template<class Scalar >
virtual Teuchos::RCP<const Thyra::ModelEvaluator<Scalar> > Tempus::StepperIMEX_RK_Partition< Scalar >::getModel ( )
inlinevirtual

Reimplemented from Tempus::StepperImplicit< Scalar >.

Definition at line 270 of file Tempus_StepperIMEX_RK_Partition_decl.hpp.

template<class Scalar >
virtual Teuchos::RCP<StepperObserver<Scalar> > Tempus::StepperIMEX_RK_Partition< Scalar >::getObserver ( ) const
inlinevirtual

Get Observer.

Implements Tempus::Stepper< Scalar >.

Definition at line 284 of file Tempus_StepperIMEX_RK_Partition_decl.hpp.

template<class Scalar >
virtual Scalar Tempus::StepperIMEX_RK_Partition< Scalar >::getOrder ( ) const
inlinevirtual
template<class Scalar >
virtual Scalar Tempus::StepperIMEX_RK_Partition< Scalar >::getOrderMax ( ) const
inlinevirtual
template<class Scalar >
virtual Scalar Tempus::StepperIMEX_RK_Partition< Scalar >::getOrderMin ( ) const
inlinevirtual
template<class Scalar >
virtual OrderODE Tempus::StepperIMEX_RK_Partition< Scalar >::getOrderODE ( ) const
inlinevirtual
template<class Scalar >
Teuchos::RCP< const Teuchos::ParameterList > Tempus::StepperIMEX_RK_Partition< Scalar >::getValidParameters ( ) const
virtual
template<class Scalar >
void Tempus::StepperIMEX_RK_Partition< Scalar >::initialize ( )
virtual

Initialize during construction and after changing input parameters.

Implements Tempus::Stepper< Scalar >.

Definition at line 356 of file Tempus_StepperIMEX_RK_Partition_impl.hpp.

template<class Scalar >
virtual bool Tempus::StepperIMEX_RK_Partition< Scalar >::isExplicit ( ) const
inlinevirtual
template<class Scalar >
virtual bool Tempus::StepperIMEX_RK_Partition< Scalar >::isExplicitImplicit ( ) const
inlinevirtual
template<class Scalar >
virtual bool Tempus::StepperIMEX_RK_Partition< Scalar >::isImplicit ( ) const
inlinevirtual
template<class Scalar >
virtual bool Tempus::StepperIMEX_RK_Partition< Scalar >::isMultiStepMethod ( ) const
inlinevirtual
template<class Scalar >
virtual bool Tempus::StepperIMEX_RK_Partition< Scalar >::isOneStepMethod ( ) const
inlinevirtual
template<class Scalar >
void Tempus::StepperIMEX_RK_Partition< Scalar >::setExplicitTableau ( Teuchos::RCP< const RKButcherTableau< Scalar > >  explicitTableau)
virtual

Set the explicit tableau from tableau.

Definition at line 244 of file Tempus_StepperIMEX_RK_Partition_impl.hpp.

template<class Scalar >
void Tempus::StepperIMEX_RK_Partition< Scalar >::setImplicitTableau ( Teuchos::RCP< const RKButcherTableau< Scalar > >  implicitTableau)
virtual

Set the implicit tableau from tableau.

Definition at line 256 of file Tempus_StepperIMEX_RK_Partition_impl.hpp.

template<class Scalar >
void Tempus::StepperIMEX_RK_Partition< Scalar >::setInitialConditions ( const Teuchos::RCP< SolutionHistory< Scalar > > &  solutionHistory)
virtual

Set the initial conditions and make them consistent.

Reimplemented from Tempus::StepperImplicit< Scalar >.

Definition at line 393 of file Tempus_StepperIMEX_RK_Partition_impl.hpp.

template<class Scalar >
void Tempus::StepperIMEX_RK_Partition< Scalar >::setModel ( const Teuchos::RCP< const Thyra::ModelEvaluator< Scalar > > &  appModel)
virtual

Reimplemented from Tempus::StepperImplicit< Scalar >.

Definition at line 267 of file Tempus_StepperIMEX_RK_Partition_impl.hpp.

template<class Scalar >
void Tempus::StepperIMEX_RK_Partition< Scalar >::setModelPair ( const Teuchos::RCP< WrapperModelEvaluatorPairPartIMEX_Basic< Scalar > > &  mePairIMEX)
virtual

Create WrapperModelPairIMEX from user-supplied ModelEvaluator pair.

The user-supplied ME pair can contain any user-specific IMEX interactions between explicit and implicit MEs.

Definition at line 293 of file Tempus_StepperIMEX_RK_Partition_impl.hpp.

template<class Scalar >
void Tempus::StepperIMEX_RK_Partition< Scalar >::setModelPair ( const Teuchos::RCP< const Thyra::ModelEvaluator< Scalar > > &  explicitModel,
const Teuchos::RCP< const Thyra::ModelEvaluator< Scalar > > &  implicitModel 
)
virtual

Create WrapperModelPairIMEX from explicit/implicit ModelEvaluators.

Use the supplied explicit/implicit MEs to create a WrapperModelPairIMEX with basic IMEX interactions between explicit and implicit MEs.

Definition at line 315 of file Tempus_StepperIMEX_RK_Partition_impl.hpp.

template<class Scalar >
void Tempus::StepperIMEX_RK_Partition< Scalar >::setObserver ( Teuchos::RCP< StepperObserver< Scalar > >  obs = Teuchos::null)
virtual

Set Observer.

Implements Tempus::Stepper< Scalar >.

Definition at line 328 of file Tempus_StepperIMEX_RK_Partition_impl.hpp.

template<class Scalar >
void Tempus::StepperIMEX_RK_Partition< Scalar >::setOrder ( Scalar  order)
inline

Definition at line 341 of file Tempus_StepperIMEX_RK_Partition_decl.hpp.

template<class Scalar >
void Tempus::StepperIMEX_RK_Partition< Scalar >::setTableaus ( std::string  stepperType = "",
Teuchos::RCP< const RKButcherTableau< Scalar > >  explicitTableau = Teuchos::null,
Teuchos::RCP< const RKButcherTableau< Scalar > >  implicitTableau = Teuchos::null 
)
virtual

Set both the explicit and implicit tableau from ParameterList.

Definition at line 74 of file Tempus_StepperIMEX_RK_Partition_impl.hpp.

template<class Scalar >
void Tempus::StepperIMEX_RK_Partition< Scalar >::takeStep ( const Teuchos::RCP< SolutionHistory< Scalar > > &  solutionHistory)
virtual

Take the specified timestep, dt, and return true if successful.

Implements Tempus::Stepper< Scalar >.

Definition at line 512 of file Tempus_StepperIMEX_RK_Partition_impl.hpp.

Member Data Documentation

template<class Scalar >
Teuchos::RCP<const RKButcherTableau<Scalar> > Tempus::StepperIMEX_RK_Partition< Scalar >::explicitTableau_
protected

Definition at line 345 of file Tempus_StepperIMEX_RK_Partition_decl.hpp.

template<class Scalar >
Teuchos::RCP<const RKButcherTableau<Scalar> > Tempus::StepperIMEX_RK_Partition< Scalar >::implicitTableau_
protected

Definition at line 346 of file Tempus_StepperIMEX_RK_Partition_decl.hpp.

template<class Scalar >
Scalar Tempus::StepperIMEX_RK_Partition< Scalar >::order_
protected

Definition at line 348 of file Tempus_StepperIMEX_RK_Partition_decl.hpp.

template<class Scalar >
std::vector<Teuchos::RCP<Thyra::VectorBase<Scalar> > > Tempus::StepperIMEX_RK_Partition< Scalar >::stageF_
protected

Definition at line 351 of file Tempus_StepperIMEX_RK_Partition_decl.hpp.

template<class Scalar >
std::vector<Teuchos::RCP<Thyra::VectorBase<Scalar> > > Tempus::StepperIMEX_RK_Partition< Scalar >::stageGx_
protected

Definition at line 352 of file Tempus_StepperIMEX_RK_Partition_decl.hpp.

template<class Scalar >
Teuchos::RCP<Thyra::VectorBase<Scalar> > Tempus::StepperIMEX_RK_Partition< Scalar >::stageZ_
protected

Definition at line 350 of file Tempus_StepperIMEX_RK_Partition_decl.hpp.

template<class Scalar >
Teuchos::RCP<StepperRKObserverComposite<Scalar> > Tempus::StepperIMEX_RK_Partition< Scalar >::stepperObserver_
protected

Definition at line 356 of file Tempus_StepperIMEX_RK_Partition_decl.hpp.

template<class Scalar >
Teuchos::RCP<Thyra::VectorBase<Scalar> > Tempus::StepperIMEX_RK_Partition< Scalar >::xTilde_
protected

Definition at line 354 of file Tempus_StepperIMEX_RK_Partition_decl.hpp.


The documentation for this class was generated from the following files: