93 #include "Epetra_Time.h"
94 #include "Epetra_Map.h"
95 #include "Epetra_FEVector.h"
96 #include "Epetra_SerialComm.h"
99 #include "Teuchos_oblackholestream.hpp"
100 #include "Teuchos_RCP.hpp"
101 #include "Teuchos_Time.hpp"
104 #include "Shards_CellTopology.hpp"
107 #include "EpetraExt_MultiVectorOut.h"
110 using namespace Intrepid;
113 int main(
int argc,
char *argv[]) {
117 std::cout <<
"\n>>> ERROR: Invalid number of arguments.\n\n";
118 std::cout <<
"Usage:\n\n";
119 std::cout <<
" ./Intrepid_example_Drivers_Example_14.exe deg NX NY NZ verbose\n\n";
120 std::cout <<
" where \n";
121 std::cout <<
" int deg - polynomial degree to be used (assumed >= 1) \n";
122 std::cout <<
" int NX - num intervals in x direction (assumed box domain, 0,1) \n";
123 std::cout <<
" int NY - num intervals in y direction (assumed box domain, 0,1) \n";
124 std::cout <<
" int NZ - num intervals in y direction (assumed box domain, 0,1) \n";
125 std::cout <<
" verbose (optional) - any character, indicates verbose output \n\n";
131 int iprint = argc - 1;
132 Teuchos::RCP<std::ostream> outStream;
133 Teuchos::oblackholestream bhs;
135 outStream = Teuchos::rcp(&std::cout,
false);
137 outStream = Teuchos::rcp(&bhs,
false);
140 Teuchos::oblackholestream oldFormatState;
141 oldFormatState.copyfmt(std::cout);
144 <<
"===============================================================================\n" \
146 <<
"| Example: Apply Stiffness Matrix for |\n" \
147 <<
"| Poisson Equation on Hexahedral Mesh |\n" \
149 <<
"| Questions? Contact Pavel Bochev (pbboche@sandia.gov), |\n" \
150 <<
"| Denis Ridzal (dridzal@sandia.gov), |\n" \
151 <<
"| Kara Peterson (kjpeter@sandia.gov). |\n" \
153 <<
"| Intrepid's website: http://trilinos.sandia.gov/packages/intrepid |\n" \
154 <<
"| Trilinos website: http://trilinos.sandia.gov |\n" \
156 <<
"===============================================================================\n";
161 int deg = atoi(argv[1]);
162 int NX = atoi(argv[2]);
163 int NY = atoi(argv[3]);
164 int NZ = atoi(argv[4]);
170 typedef shards::CellTopology CellTopology;
171 CellTopology hex_8(shards::getCellTopologyData<shards::Hexahedron<8> >() );
174 int numNodesPerElem = hex_8.getNodeCount();
175 int spaceDim = hex_8.getDimension();
179 *outStream <<
"Generating mesh ... \n\n";
181 *outStream <<
" NX" <<
" NY" <<
" NZ\n";
182 *outStream << std::setw(5) << NX <<
183 std::setw(5) << NY << std::setw(5) << NZ <<
"\n\n";
186 int numElems = NX*NY*NZ;
187 int numNodes = (NX+1)*(NY+1)*(NZ+1);
188 *outStream <<
" Number of Elements: " << numElems <<
" \n";
189 *outStream <<
" Number of Nodes: " << numNodes <<
" \n\n";
192 double leftX = 0.0, rightX = 1.0;
193 double leftY = 0.0, rightY = 1.0;
194 double leftZ = 0.0, rightZ = 1.0;
197 double hx = (rightX-leftX)/((
double)NX);
198 double hy = (rightY-leftY)/((
double)NY);
199 double hz = (rightZ-leftZ)/((
double)NZ);
205 for (
int k=0; k<NZ+1; k++)
207 for (
int j=0; j<NY+1; j++)
209 for (
int i=0; i<NX+1; i++)
211 nodeCoord(inode,0) = leftX + (double)i*hx;
212 nodeCoord(inode,1) = leftY + (double)j*hy;
213 nodeCoord(inode,2) = leftZ + (double)k*hz;
214 if (k==0 || k==NZ || j==0 || i==0 || j==NY || i==NX)
216 nodeOnBoundary(inode)=1;
220 nodeOnBoundary(inode)=0;
229 ofstream fcoordout(
"coords.dat");
230 for (
int i=0; i<numNodes; i++) {
231 fcoordout << nodeCoord(i,0) <<
" ";
232 fcoordout << nodeCoord(i,1) <<
" ";
233 fcoordout << nodeCoord(i,2) <<
"\n";
241 *outStream <<
"Getting cubature and basis ... \n\n";
248 const int numCubPoints1D = glcub->getNumPoints();
253 glcub->getCubature(cubPoints1D,cubWeights1D);
257 cub_to_tensor.push_back( glcub );
258 cub_to_tensor.push_back( glcub );
259 cub_to_tensor.push_back( glcub );
261 Array<RCP<FieldContainer<double> > > wts_by_dim(3);
262 wts_by_dim[0] = rcp( &cubWeights1D ,
false ); wts_by_dim[1] = wts_by_dim[0]; wts_by_dim[2] = wts_by_dim[1];
268 Array< Array< RCP< Basis< double , FieldContainer<double> > > > > &bases = hexBasis.getBases();
272 Array< RCP< FieldContainer<double> > > basisVals( 3 );
274 bases[0][0]->getValues( bvals1D , cubPoints1D , OPERATOR_VALUE );
275 basisVals[0] = rcp( &bvals1D ,
false ); basisVals[1] = basisVals[0]; basisVals[2] = basisVals[0];
277 Array< RCP< FieldContainer<double> > > basisDVals( 3 );
279 bases[0][0]->getValues( bdvals1D , cubPoints1D , OPERATOR_D1 );
280 basisDVals[0] = rcp( &bdvals1D ,
false ); basisDVals[1] = basisDVals[0]; basisDVals[2] = basisDVals[0];
283 const int numCubPoints = cubhex.getNumPoints();
286 cubhex.getCubature( cubPoints3D , cubWeights3D );
291 for (
int k=0; k<NZ; k++)
293 for (
int j=0; j<NY; j++)
295 for (
int i=0; i<NX; i++)
297 elemToNode(ielem,0) = k * ( NX + 1 ) * ( NY + 1 ) + j * ( NX + 1 ) + i;
298 elemToNode(ielem,1) = k * ( NX + 1 ) * ( NY + 1 ) + j * ( NX + 1 ) + i + 1;
299 elemToNode(ielem,2) = k * ( NX + 1 ) * ( NY + 1 ) + ( j + 1 ) * ( NX + 1 ) + i + 1;
300 elemToNode(ielem,3) = k * ( NX + 1 ) * ( NY + 1 ) + ( j + 1 ) * ( NX + 1 ) + i;
301 elemToNode(ielem,4) = ( k + 1 ) * ( NX + 1 ) * ( NY + 1 ) + j * ( NX + 1 ) + i;
302 elemToNode(ielem,5) = ( k + 1 ) * ( NX + 1 ) * ( NY + 1 ) + j * ( NX + 1 ) + i + 1;
303 elemToNode(ielem,6) = ( k + 1 ) * ( NX + 1 ) * ( NY + 1 ) + ( j + 1 ) * ( NX + 1 ) + i + 1;
304 elemToNode(ielem,7) = ( k + 1 ) * ( NX + 1 ) * ( NY + 1 ) + ( j + 1 ) * ( NX + 1 ) + i;
311 ofstream fe2nout(
"elem2node.dat");
312 for (
int k=0;k<NZ;k++)
314 for (
int j=0; j<NY; j++)
316 for (
int i=0; i<NX; i++)
318 int ielem = i + j * NX + k * NY * NY;
319 for (
int m=0; m<numNodesPerElem; m++)
321 fe2nout << elemToNode(ielem,m) <<
" ";
333 const int numDOF = (NX*deg+1)*(NY*deg+1)*(NZ*deg+1);
335 for (
int k=0;k<NZ;k++)
337 for (
int j=0;j<NY;j++)
339 for (
int i=0;i<NX;i++)
341 const int start = k * ( NY * deg + 1 ) * ( NX * deg + 1 ) + j * ( NX * deg + 1 ) + i * deg;
344 for (
int kloc=0;kloc<=deg;kloc++)
346 for (
int jloc=0;jloc<=deg;jloc++)
348 for (
int iloc=0;iloc<=deg;iloc++)
350 ltgMapping(ielem,local_dof_cur) = start
351 + kloc * ( NX * deg + 1 ) * ( NY * deg + 1 )
352 + jloc * ( NX * deg + 1 )
365 ofstream ltgout(
"ltg.dat");
366 for (
int k=0;k<NZ;k++)
368 for (
int j=0; j<NY; j++)
370 for (
int i=0; i<NX; i++)
372 int ielem = i + j * NX + k * NX * NY;
373 for (
int m=0; m<hexBasis.getCardinality(); m++)
375 ltgout << ltgMapping(ielem,m) <<
" ";
385 Epetra_SerialComm Comm;
386 Epetra_Map globalMapG(numDOF, 0, Comm);
387 Epetra_FEVector u(globalMapG); u.Random();
388 Epetra_FEVector Ku(globalMapG);
398 for (
int i=0;i<numElems;i++)
400 for (
int j=0;j<numNodesPerElem;j++)
402 const int nodeCur = elemToNode(i,j);
403 for (
int k=0;k<spaceDim;k++)
405 cellVertices(i,j,k) = nodeCoord(nodeCur,k);
428 double *uVals = u[0];
429 double *KuVals = Ku[0];
431 Teuchos::Time full_timer(
"Time to apply operator matrix-free:" );
432 Teuchos::Time scatter_timer(
"Time to scatter dof:" );
433 Teuchos::Time elementwise_timer(
"Time to do elementwise computation:" );
434 Teuchos::Time grad_timer(
"Time to compute gradients:" );
435 Teuchos::Time pointwise_timer(
"Time to do pointwise transformations:" );
436 Teuchos::Time moment_timer(
"Time to compute moments:" );
437 Teuchos::Time gather_timer(
"Time to gather dof:" );
441 scatter_timer.start();
442 for (
int k=0; k<numElems; k++)
444 for (
int i=0;i<hexBasis.getCardinality();i++)
446 uScattered(k,0,i) = uVals[ltgMapping(k,i)];
449 scatter_timer.stop();
451 elementwise_timer.start();
454 Intrepid::TensorProductSpaceTools::evaluateGradient<double>( gradU , uScattered ,basisVals , basisDVals );
456 pointwise_timer.start();
457 Intrepid::FunctionSpaceToolsInPlace::HGRADtransformGRAD<double>( gradU , cellJacobian );
458 Intrepid::FunctionSpaceToolsInPlace::HGRADtransformGRADDual<double>( gradU , cellJacobian );
459 Intrepid::FunctionSpaceToolsInPlace::multiplyMeasure<double>( gradU , cellJacobDet );
460 pointwise_timer.stop();
461 moment_timer.start();
462 Intrepid::TensorProductSpaceTools::momentsGrad<double>( KuScattered , gradU , basisVals , basisDVals , wts_by_dim );
464 elementwise_timer.stop();
465 gather_timer.start();
466 for (
int k=0;k<numElems;k++)
468 for (
int i=0;i<hexBasis.getCardinality();i++)
470 KuVals[ltgMapping(k,i)] += KuScattered(k,0,i);
476 *outStream << full_timer.name() <<
" " << full_timer.totalElapsedTime() <<
" sec\n";
477 *outStream <<
"\t" << scatter_timer.name() <<
" " << scatter_timer.totalElapsedTime() <<
" sec\n";
478 *outStream <<
"\t" << elementwise_timer.name() <<
" " << elementwise_timer.totalElapsedTime() <<
" sec\n";
479 *outStream <<
"\t\t" << grad_timer.name() <<
" " << grad_timer.totalElapsedTime() <<
" sec\n";
480 *outStream <<
"\t\t" << pointwise_timer.name() <<
" " << pointwise_timer.totalElapsedTime() <<
" sec\n";
481 *outStream <<
"\t\t" << moment_timer.name() <<
" " << moment_timer.totalElapsedTime() <<
" sec\n";
482 *outStream <<
"\t" << gather_timer.name() <<
" " << gather_timer.totalElapsedTime() <<
" sec\n";
485 *outStream <<
"End Result: TEST PASSED\n";
488 std::cout.copyfmt(oldFormatState);
Header file for utility class to provide multidimensional containers.
Header file for the Intrepid::CubatureTensor class.
Header file for the Intrepid::HGRAD_HEX_Cn_FEM class.
Utilizes cubature (integration) rules contained in the library Polylib (Spencer Sherwin, Aeronautics, Imperial College London) within Intrepid.
Implementation of the default H(grad)-compatible FEM basis of degree 2 on Hexahedron cell...
Header file for the Intrepid::CubaturePolylib class.
Defines tensor-product cubature (integration) rules in Intrepid.