ROL
|
Implements an equality constraint function that evaluates to zero on the surface of a bounded parallelpiped and is positive in the interior. More...
#include <ROL_BinaryConstraint.hpp>
Classes | |
class | BoundsCheck |
Public Member Functions | |
BinaryConstraint (const ROL::Ptr< const V > &lo, const ROL::Ptr< const V > &up, Real gamma) | |
BinaryConstraint (const BoundConstraint< Real > &bnd, Real gamma) | |
BinaryConstraint (const ROL::Ptr< const BoundConstraint< Real >> &bnd, Real gamma) | |
void | value (V &c, const V &x, Real &tol) |
Evaluate constraint
\[ c_i(x) = \begin{cases} \gamma(u_i-x_i)(x_i-l_i) & -\infty<l_i,u_i<\infty \\ \gamma(x_i-l_i) & -\infty<l_i,u_i=\infty \\ \gamma(u_i-x_i) & l_i=-\infty,u_i<\infty \\ 0 & l_i=-\infty,u_i=\infty \end{cases} \] . More... | |
void | applyJacobian (V &jv, const V &v, const V &x, Real &tol) |
void | applyAdjointJacobian (V &ajv, const V &v, const V &x, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
void | applyAdjointHessian (V &ahuv, const V &u, const V &v, const V &x, Real &tol) |
void | setPenalty (Real gamma) |
Public Member Functions inherited from ROL::Constraint< Real > | |
virtual | ~Constraint (void) |
Constraint (void) | |
virtual void | update (const Vector< Real > &x, bool flag=true, int iter=-1) |
Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More... | |
virtual void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
virtual std::vector< Real > | solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol) |
Approximately solves the augmented system
\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \] where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More... | |
virtual void | applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol) |
Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:
\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \] where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method. More... | |
void | activate (void) |
Turn on constraints. More... | |
void | deactivate (void) |
Turn off constraints. More... | |
bool | isActivated (void) |
Check if constraints are on. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS) |
Finite-difference check for the application of the adjoint of constraint Jacobian. More... | |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual void | setParameter (const std::vector< Real > ¶m) |
Private Types | |
using | V = Vector< Real > |
Private Attributes | |
const ROL::Ptr< const V > | lo_ |
const ROL::Ptr< const V > | up_ |
ROL::Ptr< V > | d_ |
Real | gamma_ |
Additional Inherited Members | |
Protected Member Functions inherited from ROL::Constraint< Real > | |
const std::vector< Real > | getParameter (void) const |
Implements an equality constraint function that evaluates to zero on the surface of a bounded parallelpiped and is positive in the interior.
Definition at line 61 of file ROL_BinaryConstraint.hpp.
|
private |
Definition at line 63 of file ROL_BinaryConstraint.hpp.
|
inline |
Definition at line 128 of file ROL_BinaryConstraint.hpp.
|
inline |
Definition at line 131 of file ROL_BinaryConstraint.hpp.
|
inline |
Definition at line 135 of file ROL_BinaryConstraint.hpp.
|
inlinevirtual |
Evaluate constraint
\[ c_i(x) = \begin{cases} \gamma(u_i-x_i)(x_i-l_i) & -\infty<l_i,u_i<\infty \\ \gamma(x_i-l_i) & -\infty<l_i,u_i=\infty \\ \gamma(u_i-x_i) & l_i=-\infty,u_i<\infty \\ 0 & l_i=-\infty,u_i=\infty \end{cases} \]
.
Implements ROL::Constraint< Real >.
Definition at line 148 of file ROL_BinaryConstraint.hpp.
References ROL::Vector< Real >::applyBinary(), ROL::Vector< Real >::axpy(), ROL::BinaryConstraint< Real >::d_, ROL::BinaryConstraint< Real >::gamma_, ROL::BinaryConstraint< Real >::lo_, ROL::Vector< Real >::scale(), ROL::Vector< Real >::set(), and ROL::BinaryConstraint< Real >::up_.
|
inlinevirtual |
Evaluate constraint Jacobian at x in the direction v
\[ c_i'(x)v = \begin{cases} \gamma(u_i+l_i-2x_i)v_i & -\infty<l_i,u_i<\infty \\ \gamma v_i & -\infty<l_i,u_i=\infty \\ -\gamma v_i & l_i=-\infty,u_i<\infty \\ 0 & l_i=-\infty,u_i=\infty \end{cases} \]
Reimplemented from ROL::Constraint< Real >.
Definition at line 173 of file ROL_BinaryConstraint.hpp.
References ROL::Vector< Real >::applyBinary(), ROL::Vector< Real >::axpy(), ROL::BinaryConstraint< Real >::d_, ROL::BinaryConstraint< Real >::gamma_, ROL::BinaryConstraint< Real >::lo_, ROL::Vector< Real >::scale(), ROL::Vector< Real >::set(), and ROL::BinaryConstraint< Real >::up_.
Referenced by ROL::BinaryConstraint< Real >::applyAdjointJacobian().
|
inlinevirtual |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\).
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b x; a dual optimization-space vector @param[in] v is a dual constraint-space vector @param[in] x is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#80, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{X}^*\).
The default implementation is a finite-difference approximation.
Reimplemented from ROL::Constraint< Real >.
Definition at line 189 of file ROL_BinaryConstraint.hpp.
References ROL::BinaryConstraint< Real >::applyJacobian().
|
inlinevirtual |
c_i''(x)(w,v) = {cases} -2 v_i w_i & -<l_i,u_i< \ 0 & {otherwise} {cases}
Reimplemented from ROL::Constraint< Real >.
Definition at line 200 of file ROL_BinaryConstraint.hpp.
References ROL::Vector< Real >::applyBinary(), ROL::Vector< Real >::axpy(), ROL::BinaryConstraint< Real >::d_, ROL::BinaryConstraint< Real >::gamma_, ROL::BinaryConstraint< Real >::lo_, ROL::Vector< Real >::scale(), ROL::Vector< Real >::set(), and ROL::BinaryConstraint< Real >::up_.
|
inline |
Definition at line 218 of file ROL_BinaryConstraint.hpp.
References ROL::BinaryConstraint< Real >::gamma_.
|
private |
Definition at line 68 of file ROL_BinaryConstraint.hpp.
Referenced by ROL::BinaryConstraint< Real >::applyAdjointHessian(), ROL::BinaryConstraint< Real >::applyJacobian(), and ROL::BinaryConstraint< Real >::value().
|
private |
Definition at line 69 of file ROL_BinaryConstraint.hpp.
Referenced by ROL::BinaryConstraint< Real >::applyAdjointHessian(), ROL::BinaryConstraint< Real >::applyJacobian(), and ROL::BinaryConstraint< Real >::value().
|
private |
Definition at line 71 of file ROL_BinaryConstraint.hpp.
Referenced by ROL::BinaryConstraint< Real >::applyAdjointHessian(), ROL::BinaryConstraint< Real >::applyJacobian(), and ROL::BinaryConstraint< Real >::value().
|
private |
Definition at line 76 of file ROL_BinaryConstraint.hpp.
Referenced by ROL::BinaryConstraint< Real >::applyAdjointHessian(), ROL::BinaryConstraint< Real >::applyJacobian(), ROL::BinaryConstraint< Real >::setPenalty(), and ROL::BinaryConstraint< Real >::value().