ROL
ROL_LinearCombinationObjective.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_LINEARCOMBINATIONOBJECTIVE_H
45 #define ROL_LINEARCOMBINATIONOBJECTIVE_H
46 
47 #include "ROL_Objective.hpp"
48 #include "ROL_Ptr.hpp"
49 
50 namespace ROL {
51 
52 template <class Real>
53 class LinearCombinationObjective : public Objective<Real> {
54 private:
55  const std::vector<ROL::Ptr<Objective<Real> > > obj_;
56  std::vector<Real> weights_;
57  size_t size_;
58 
59  ROL::Ptr<Vector<Real> > xdual_;
61 
62 public:
63  LinearCombinationObjective(const std::vector<ROL::Ptr<Objective<Real> > > &obj)
64  : Objective<Real>(), obj_(obj),
65  xdual_(ROL::nullPtr), initialized_(false) {
66  size_ = obj_.size();
67  weights_.clear(); weights_.assign(size_,static_cast<Real>(1));
68  }
69 
70  LinearCombinationObjective(const std::vector<Real> &weights,
71  const std::vector<ROL::Ptr<Objective<Real> > > &obj)
72  : Objective<Real>(), obj_(obj), weights_(weights), size_(weights.size()),
73  xdual_(ROL::nullPtr), initialized_(false) {}
74 
75  void update(const Vector<Real> &x, bool flag = true, int iter = -1) {
76  for (size_t i=0; i<size_; ++i) {
77  obj_[i]->update(x,flag,iter);
78  }
79  }
80 
81  Real value( const Vector<Real> &x, Real &tol ) {
82  Real val = 0.;
83  for (size_t i = 0; i < size_; i++) {
84  val += weights_[i]*obj_[i]->value(x,tol);
85  }
86  return val;
87  }
88 
89  void gradient( Vector<Real> &g, const Vector<Real> &x, Real &tol ) {
90  if (!initialized_) {
91  xdual_ = g.clone();
92  initialized_ = true;
93  }
94  g.zero();
95  for (size_t i = 0; i < size_; i++) {
96  obj_[i]->gradient(*xdual_,x,tol);
97  g.axpy(weights_[i],*xdual_);
98  }
99  }
100 
101  void hessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &x, Real &tol ) {
102  if (!initialized_) {
103  xdual_ = hv.clone();
104  initialized_ = true;
105  }
106  hv.zero();
107  for (size_t i = 0; i < size_; i++) {
108  obj_[i]->hessVec(*xdual_,v,x,tol);
109  hv.axpy(weights_[i],*xdual_);
110  }
111  }
112 
113 // Definitions for parametrized (stochastic) objective functions
114 public:
115  void setParameter(const std::vector<Real> &param) {
117  for (size_t i = 0; i < size_; ++i) {
118  obj_[i]->setParameter(param);
119  }
120  }
121 }; // class LinearCombinationObjective
122 
123 } // namespace ROL
124 
125 #endif
Provides the interface to evaluate objective functions.
LinearCombinationObjective(const std::vector< Real > &weights, const std::vector< ROL::Ptr< Objective< Real > > > &obj)
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
const double weights[4][5]
Definition: ROL_Types.hpp:937
virtual void axpy(const Real alpha, const Vector &x)
Compute where .
Definition: ROL_Vector.hpp:153
void gradient(Vector< Real > &g, const Vector< Real > &x, Real &tol)
Compute gradient.
virtual void zero()
Set to zero vector.
Definition: ROL_Vector.hpp:167
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
LinearCombinationObjective(const std::vector< ROL::Ptr< Objective< Real > > > &obj)
virtual void setParameter(const std::vector< Real > &param)
void update(const Vector< Real > &x, bool flag=true, int iter=-1)
Update objective function.
void setParameter(const std::vector< Real > &param)
Real value(const Vector< Real > &x, Real &tol)
Compute value.
const std::vector< ROL::Ptr< Objective< Real > > > obj_
void hessVec(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply Hessian approximation to vector.