ROL
ROL_DynamicObjective.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #pragma once
45 #ifndef ROL_DYNAMICOBJECTIVE_HPP
46 #define ROL_DYNAMICOBJECTIVE_HPP
47 
48 #include "ROL_DynamicFunction.hpp"
49 #include "ROL_TimeStamp.hpp"
50 
51 
70 namespace ROL {
71 
72 template<typename Real>
74 public:
75 
76  using V = Vector<Real>;
78 
79  virtual ~DynamicObjective() {}
80 
81  virtual void update( const V& uo, const V& un, const V& z, const TS& timeStamp ) {
82  update_uo( uo, timeStamp );
83  update_un( un, timeStamp );
84  update_z( z, timeStamp );
85  }
86 
87  virtual void update_uo( const V& uo, const TS& timeStamp ) { }
88  virtual void update_un( const V& un, const TS& timeStamp ) { }
89  virtual void update_z( const V& z, const TS& timeStamp ) { }
90 
91  virtual Real value( const V& uo, const V& un,
92  const V& z, const TS& timeStamp ) const = 0;
93 
94  //----------------------------------------------------------------------------
95  // Gradient Terms
96  virtual void gradient_uo( V& g, const V& uo, const V& un,
97  const V& z, const TS& timeStamp ) const {}
98 
99  virtual void gradient_un( V& g, const V& uo, const V& un,
100  const V& z, const TS& timeStamp ) const {}
101 
102  virtual void gradient_z( V& g, const V& uo, const V& un,
103  const V& z, const TS& timeStamp ) const {}
104 
105  //----------------------------------------------------------------------------
106  // Hessian-Vector product terms
107  virtual void hessVec_uo_uo( V& hv, const V& v, const V& uo, const V& un,
108  const V& z, const TS& timeStamp ) const {}
109 
110  virtual void hessVec_uo_un( V& hv, const V& v, const V& uo, const V& un,
111  const V& z, const TS& timeStamp ) const {}
112 
113  virtual void hessVec_uo_z( V& hv, const V& v, const V& uo, const V& un,
114  const V& z, const TS& timeStamp ) const {}
115 
116 
117  virtual void hessVec_un_uo( V& hv, const V& v, const V& uo, const V& un,
118  const V& z, const TS& timeStamp ) const {}
119 
120  virtual void hessVec_un_un( V& hv, const V& v, const V& uo, const V& un,
121  const V& z, const TS& timeStamp ) const {}
122 
123  virtual void hessVec_un_z( V& hv, const V& v, const V& uo, const V& un,
124  const V& z, const TS& timeStamp ) const {}
125 
126 
127  virtual void hessVec_z_uo( V& hv, const V& v, const V& uo, const V& un,
128  const V& z, const TS& timeStamp ) const {}
129 
130  virtual void hessVec_z_un( V& hv, const V& v, const V& uo, const V& un,
131  const V& z, const TS& timeStamp ) const {}
132 
133  virtual void hessVec_z_z( V& hv, const V& v, const V& uo, const V& un,
134  const V& z, const TS& timeStamp ) const {}
135 };
136 
137 } // namespace ROL
138 
139 
140 #endif // ROL_DYNAMICOBJECTIVE_HPP
141 
virtual void hessVec_z_un(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void update_un(const V &un, const TS &timeStamp)
Contains local time step information.
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
Defines the time-dependent objective function interface for simulation-based optimization. Computes time-local contributions of value, gradient, Hessian-vector product etc to a larger composite objective defined over the simulation time. In contrast to other objective classes Objective_TimeSimOpt has a default implementation of value which returns zero, as time-dependent simulation based optimization problems may have an objective value which depends only on the final state of the system.
virtual void hessVec_un_z(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
Vector< Real > V
virtual void update_z(const V &z, const TS &timeStamp)
virtual void hessVec_z_z(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void hessVec_uo_un(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void gradient_z(V &g, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void hessVec_uo_uo(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void hessVec_un_un(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void gradient_un(V &g, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void update(const V &uo, const V &un, const V &z, const TS &timeStamp)
virtual void update_uo(const V &uo, const TS &timeStamp)
virtual void hessVec_un_uo(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void hessVec_z_uo(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void hessVec_uo_z(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void gradient_uo(V &g, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual Real value(const V &uo, const V &un, const V &z, const TS &timeStamp) const =0