ROL
ROL_CDFObjective.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_CDFOBJECTIVE_H
45 #define ROL_CDFOBJECTIVE_H
46 
47 #include "ROL_Objective.hpp"
48 #include "ROL_BatchManager.hpp"
49 #include "ROL_Vector.hpp"
50 #include "ROL_Distribution.hpp"
51 #include "ROL_Ptr.hpp"
52 #include <math.h>
53 
54 namespace ROL {
55 
56 template <class Real>
57 class CDFObjective : public Objective<Real> {
58 private:
59  // Batch manager for parallel computation
60  ROL::Ptr<BatchManager<Real> > bman_;
61 
62  // Distribution information
63  std::vector<ROL::Ptr<Distribution<Real> > > dist_;
64  std::vector<Real> lowerBound_;
65  std::vector<Real> upperBound_;
67 
68  const Real scale_;
69  const Real sqrt2_;
70  const Real sqrtpi_;
71 
72  const bool optProb_;
73  const bool optAtom_;
74 
75  std::vector<Real> pts_;
76  std::vector<Real> wts_;
77 
78  // Number of quadrature points
80 
81  void initializeQuadrature(void) {
82  numPoints_ = 20;
83  pts_.clear(); pts_.resize(numPoints_,0.);
84  wts_.clear(); wts_.resize(numPoints_,0.);
85  wts_[0] = 0.1527533871307258; pts_[0] = -0.0765265211334973;
86  wts_[1] = 0.1527533871307258; pts_[1] = 0.0765265211334973;
87  wts_[2] = 0.1491729864726037; pts_[2] = -0.2277858511416451;
88  wts_[3] = 0.1491729864726037; pts_[3] = 0.2277858511416451;
89  wts_[4] = 0.1420961093183820; pts_[4] = -0.3737060887154195;
90  wts_[5] = 0.1420961093183820; pts_[5] = 0.3737060887154195;
91  wts_[6] = 0.1316886384491766; pts_[6] = -0.5108670019508271;
92  wts_[7] = 0.1316886384491766; pts_[7] = 0.5108670019508271;
93  wts_[8] = 0.1181945319615184; pts_[8] = -0.6360536807265150;
94  wts_[9] = 0.1181945319615184; pts_[9] = 0.6360536807265150;
95  wts_[10] = 0.1019301198172404; pts_[10] = -0.7463319064601508;
96  wts_[11] = 0.1019301198172404; pts_[11] = 0.7463319064601508;
97  wts_[12] = 0.0832767415767048; pts_[12] = -0.8391169718222188;
98  wts_[13] = 0.0832767415767048; pts_[13] = 0.8391169718222188;
99  wts_[14] = 0.0626720483341091; pts_[14] = -0.9122344282513259;
100  wts_[15] = 0.0626720483341091; pts_[15] = 0.9122344282513259;
101  wts_[16] = 0.0406014298003869; pts_[16] = -0.9639719272779138;
102  wts_[17] = 0.0406014298003869; pts_[17] = 0.9639719272779138;
103  wts_[18] = 0.0176140071391521; pts_[18] = -0.9931285991850949;
104  wts_[19] = 0.0176140071391521; pts_[19] = 0.9931285991850949;
105  for (int i = 0; i < numPoints_; i++) {
106  wts_[i] *= 0.5;
107  pts_[i] += 1.; pts_[i] *= 0.5;
108  }
109  }
110 
111  Real valueCDF(const int dim, const Real loc,
112  const ProbabilityVector<Real> &prob,
113  const AtomVector<Real> &atom) const {
114  const int numSamples = prob.getNumMyAtoms();
115  Real val = 0, hs = 0, xpt = 0, xwt = 0, sum = 0, half(0.5), one(1);
116  for (int k = 0; k < numSamples; k++) {
117  xpt = (*atom.getAtom(k))[dim]; xwt = prob.getProbability(k);
118  hs = half * (one + erf((loc-xpt)/(sqrt2_*scale_)));
119  val += xwt * hs;
120  }
121  bman_->sumAll(&val,&sum,1);
122  return sum;
123  }
124 
125  Real gradientCDF(std::vector<Real> &gradx, std::vector<Real> &gradp,
126  const int dim, const Real loc,
127  const ProbabilityVector<Real> &prob,
128  const AtomVector<Real> &atom) const {
129  const int numSamples = prob.getNumMyAtoms();
130  gradx.resize(numSamples,0); gradp.resize(numSamples,0);
131  Real val = 0, hs = 0, xpt = 0, xwt = 0, sum = 0, half(0.5), one(1);
132  for (int k = 0; k < numSamples; k++) {
133  xpt = (*atom.getAtom(k))[dim]; xwt = prob.getProbability(k);
134  hs = half * (one + erf((loc-xpt)/(sqrt2_*scale_)));
135  val += xwt * hs;
136  gradx[k] = -(xwt/(sqrt2_*sqrtpi_*scale_))
137  * std::exp(-std::pow((loc-xpt)/(sqrt2_*scale_),2));
138  gradp[k] = hs;
139  }
140  bman_->sumAll(&val,&sum,1);
141  return sum;
142  }
143 
144  Real hessVecCDF(std::vector<Real> &hvxx, std::vector<Real> &hvxp, std::vector<Real> &hvpx,
145  std::vector<Real> &gradx, std::vector<Real> &gradp,
146  Real &sumx, Real &sump,
147  const int dim, const Real loc,
148  const ProbabilityVector<Real> &prob,
149  const AtomVector<Real> &atom,
150  const ProbabilityVector<Real> &vprob,
151  const AtomVector<Real> &vatom) const {
152  const int numSamples = prob.getNumMyAtoms();
153  hvxx.resize(numSamples,0); hvxp.resize(numSamples,0); hvpx.resize(numSamples,0);
154  gradx.resize(numSamples,0); gradp.resize(numSamples,0);
155  sumx = 0; sump = 0;
156  std::vector<Real> psum(3,0), out(3,0);
157  Real val = 0, hs = 0, dval = 0, scale3 = std::pow(scale_,3);
158  Real xpt = 0, xwt = 0, vpt = 0, vwt = 0, half(0.5), one(1);
159  for (int k = 0; k < numSamples; k++) {
160  xpt = (*atom.getAtom(k))[dim]; xwt = prob.getProbability(k);
161  vpt = (*vatom.getAtom(k))[dim]; vwt = vprob.getProbability(k);
162  hs = half * (one + erf((loc-xpt)/(sqrt2_*scale_)));
163  psum[0] += xwt * hs;
164  dval = std::exp(-std::pow((loc-xpt)/(sqrt2_*scale_),2));
165  gradx[k] = -(xwt/(sqrt2_*sqrtpi_*scale_)) * dval;
166  gradp[k] = hs;
167  hvxx[k] = -(xwt/(sqrt2_*sqrtpi_*scale3)) * dval * (loc-xpt) * vpt;
168  hvxp[k] = -dval/(sqrt2_*sqrtpi_*scale_)*vwt;
169  hvpx[k] = -dval/(sqrt2_*sqrtpi_*scale_)*vpt;
170  psum[1] += vpt*gradx[k];
171  psum[2] += vwt*gradp[k];
172  }
173  bman_->sumAll(&psum[0],&out[0],3);
174  val = out[0]; sumx = out[1]; sump = out[2];
175  return val;
176  }
177 
178 public:
179  CDFObjective(const std::vector<ROL::Ptr<Distribution<Real> > > &dist,
180  const ROL::Ptr<BatchManager<Real> > &bman,
181  const Real scale = 1.e-2,
182  const bool optProb = true, const bool optAtom = true)
183  : Objective<Real>(), bman_(bman), dist_(dist), dimension_(dist.size()),
184  scale_(scale), sqrt2_(std::sqrt(2.)), sqrtpi_(std::sqrt(ROL::ScalarTraits<Real>::pi())),
185  optProb_(optProb), optAtom_(optAtom) {
186  lowerBound_.resize(dimension_,0);
187  upperBound_.resize(dimension_,0);
188  for ( int i = 0; i < dimension_; i++ ) {
189  lowerBound_[i] = dist[i]->lowerBound();
190  upperBound_[i] = dist[i]->upperBound();
191  }
193  }
194 
195  Real value( const Vector<Real> &x, Real &tol ) {
196  const SROMVector<Real> &ex = dynamic_cast<const SROMVector<Real>&>(x);
197  const ProbabilityVector<Real> &prob = *(ex.getProbabilityVector());
198  const AtomVector<Real> &atom = *(ex.getAtomVector());
199  Real val(0), diff(0), pt(0), wt(0), meas(0), lb(0), one(1);
200  for (int d = 0; d < dimension_; d++) {
201  lb = lowerBound_[d];
202  meas = (upperBound_[d] - lb);
203  meas = ((meas > ROL_EPSILON<Real>()) ? meas : one);
204  for (int k = 0; k < numPoints_; k++) {
205  pt = meas*pts_[k] + lb;
206  wt = wts_[k]/meas;
207  diff = (valueCDF(d,pt,prob,atom)-dist_[d]->evaluateCDF(pt));
208  val += wt*std::pow(diff,2);
209  }
210  }
211  return 0.5*val;
212  }
213 
214  void gradient( Vector<Real> &g, const Vector<Real> &x, Real &tol ) {
215  g.zero();
216  const SROMVector<Real> &ex = dynamic_cast<const SROMVector<Real>&>(x);
217  const ProbabilityVector<Real> &prob = *(ex.getProbabilityVector());
218  const AtomVector<Real> &atom = *(ex.getAtomVector());
219  const int numSamples = prob.getNumMyAtoms();
220  std::vector<Real> gradx(numSamples,0.), gradp(numSamples,0);
221  Real diff(0), pt(0), wt(0), meas(0), lb(0), val(0), one(1);
222  std::vector<Real> val_wt(numSamples,0), tmp(dimension_,0);
223  std::vector<std::vector<Real> > val_pt(numSamples,tmp);
224  for (int d = 0; d < dimension_; d++) {
225  lb = lowerBound_[d];
226  meas = (upperBound_[d] - lb);
227  meas = ((meas > ROL_EPSILON<Real>()) ? meas : one);
228  for (int k = 0; k < numPoints_; k++) {
229  pt = meas*pts_[k] + lb;
230  wt = wts_[k]/meas;
231  val = gradientCDF(gradx,gradp,d,pt,prob,atom);
232  diff = (val-dist_[d]->evaluateCDF(pt));
233  for (int j = 0; j < numSamples; j++) {
234  (val_pt[j])[d] += wt * diff * gradx[j];
235  val_wt[j] += wt * diff * gradp[j];
236  }
237  }
238  }
239  SROMVector<Real> &eg = dynamic_cast<SROMVector<Real>&>(g);
241  AtomVector<Real> &gatom = *(eg.getAtomVector());
242  for (int k = 0; k < numSamples; k++) {
243  if ( optProb_ ) {
244  gprob.setProbability(k,val_wt[k]);
245  }
246  if ( optAtom_ ) {
247  gatom.setAtom(k,val_pt[k]);
248  }
249  }
250  }
251 
252  void hessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &x, Real &tol ) {
253  hv.zero();
254  const SROMVector<Real> &ev = dynamic_cast<const SROMVector<Real>&>(v);
255  const ProbabilityVector<Real> &vprob = *(ev.getProbabilityVector());
256  const AtomVector<Real> &vatom = *(ev.getAtomVector());
257  const SROMVector<Real> &ex = dynamic_cast<const SROMVector<Real>&>(x);
258  const ProbabilityVector<Real> &prob = *(ex.getProbabilityVector());
259  const AtomVector<Real> &atom = *(ex.getAtomVector());
260  const int numSamples = prob.getNumMyAtoms();
261  std::vector<Real> hvxx(numSamples,0), hvxp(numSamples,0), hvpx(numSamples,0);
262  std::vector<Real> gradx(numSamples,0), gradp(numSamples,0);
263  Real diff(0), pt(0), wt(0), meas(0), lb(0), val(0), sumx(0), sump(0), one(1);
264  std::vector<Real> val_wt(numSamples,0), tmp(dimension_,0);
265  std::vector<std::vector<Real> > val_pt(numSamples,tmp);
266  for (int d = 0; d < dimension_; d++) {
267  lb = lowerBound_[d];
268  meas = (upperBound_[d] - lb);
269  meas = ((meas > ROL_EPSILON<Real>()) ? meas : one);
270  for (int k = 0; k < numPoints_; k++) {
271  pt = meas*pts_[k] + lb;
272  wt = wts_[k]/meas;
273  val = hessVecCDF(hvxx,hvxp,hvpx,gradx,gradp,sumx,sump,d,pt,prob,atom,vprob,vatom);
274  diff = (val-dist_[d]->evaluateCDF(pt));
275  for (int j = 0; j < numSamples; j++) {
276  (val_pt[j])[d] += wt * ( (sump + sumx) * gradx[j] + diff * (hvxx[j] + hvxp[j]) );
277  val_wt[j] += wt * ( (sump + sumx) * gradp[j] + diff * hvpx[j] );
278  }
279  }
280  }
281  SROMVector<Real> &ehv = dynamic_cast<SROMVector<Real>&>(hv);
283  AtomVector<Real> &hatom = *(ehv.getAtomVector());
284  for (int k = 0; k < numSamples; k++) {
285  if ( optProb_ ) {
286  hprob.setProbability(k,val_wt[k]);
287  }
288  if ( optAtom_ ) {
289  hatom.setAtom(k,val_pt[k]);
290  }
291  }
292  }
293 }; // class LinearCombinationObjective
294 
295 } // namespace ROL
296 
297 #endif
Provides the interface to evaluate objective functions.
std::vector< Real > lowerBound_
Real hessVecCDF(std::vector< Real > &hvxx, std::vector< Real > &hvxp, std::vector< Real > &hvpx, std::vector< Real > &gradx, std::vector< Real > &gradp, Real &sumx, Real &sump, const int dim, const Real loc, const ProbabilityVector< Real > &prob, const AtomVector< Real > &atom, const ProbabilityVector< Real > &vprob, const AtomVector< Real > &vatom) const
const ROL::Ptr< const ProbabilityVector< Real > > getProbabilityVector(void) const
Provides the std::vector implementation of the ROL::Vector interface.
Real value(const Vector< Real > &x, Real &tol)
Compute value.
const Real getProbability(const int i) const
ROL::Ptr< const std::vector< Real > > getAtom(const int i) const
void setAtom(const int i, const std::vector< Real > &pt)
CDFObjective(const std::vector< ROL::Ptr< Distribution< Real > > > &dist, const ROL::Ptr< BatchManager< Real > > &bman, const Real scale=1.e-2, const bool optProb=true, const bool optAtom=true)
virtual void zero()
Set to zero vector.
Definition: ROL_Vector.hpp:167
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
void hessVec(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply Hessian approximation to vector.
std::vector< Real > wts_
void gradient(Vector< Real > &g, const Vector< Real > &x, Real &tol)
Compute gradient.
void initializeQuadrature(void)
Provides the std::vector implementation of the ROL::Vector interface.
Real gradientCDF(std::vector< Real > &gradx, std::vector< Real > &gradp, const int dim, const Real loc, const ProbabilityVector< Real > &prob, const AtomVector< Real > &atom) const
std::vector< Real > upperBound_
Provides the std::vector implementation of the ROL::Vector interface.
std::vector< Real > pts_
std::vector< ROL::Ptr< Distribution< Real > > > dist_
const ROL::Ptr< const AtomVector< Real > > getAtomVector(void) const
ROL::Ptr< BatchManager< Real > > bman_
Real valueCDF(const int dim, const Real loc, const ProbabilityVector< Real > &prob, const AtomVector< Real > &atom) const