Stokhos Package Browser (Single Doxygen Collection)  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
pce_example.cpp
Go to the documentation of this file.
1 // @HEADER
2 // ***********************************************************************
3 //
4 // Stokhos Package
5 // Copyright (2009) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
38 //
39 // ***********************************************************************
40 // @HEADER
41 
42 // pce_example
43 //
44 // usage:
45 // pce_example
46 //
47 // output:
48 // prints the Hermite Polynomial Chaos Expansion of the simple function
49 //
50 // v = 1/(log(u)^2+1)
51 //
52 // where u = 1 + 0.1*x_1 + 0.05*x_2 + 0.01*x_3 x1,x2,x3 are zero-mean
53 // unit-variance Gaussian random variables.
54 
55 #include "Stokhos_Sacado.hpp"
56 
57 // The function to compute the polynomial chaos expansion of,
58 // written as a template function
59 template <class ScalarType>
60 ScalarType simple_function(const ScalarType& u) {
61  ScalarType z = std::log(u);
62  return 1.0/(z*z + 1.0);
63 }
64 
65 int main(int argc, char **argv)
66 {
67  // Typename of Polynomial Chaos scalar type
70 
71  // Short-hand for several classes used below
72  using Teuchos::Array;
73  using Teuchos::RCP;
74  using Teuchos::rcp;
78  using Stokhos::Quadrature;
82 
83  try {
84 
85  // Basis of dimension 3, order 4
86  const int d = 3;
87  const int p = 4;
88  Array< RCP<const OneDOrthogPolyBasis<int,double> > > bases(d);
89  for (int i=0; i<d; i++) {
90  bases[i] = rcp(new HermiteBasis<int,double>(p));
91  }
92  RCP<const CompletePolynomialBasis<int,double> > basis =
93  rcp(new CompletePolynomialBasis<int,double>(bases));
94 
95  // Quadrature method
96  RCP<const Quadrature<int,double> > quad =
97  rcp(new TensorProductQuadrature<int,double>(basis));
98 
99  // Triple product tensor
100  RCP<Sparse3Tensor<int,double> > Cijk =
101  basis->computeTripleProductTensor();
102 
103  // Expansion method
104  RCP<QuadOrthogPolyExpansion<int,double> > expn =
105  rcp(new QuadOrthogPolyExpansion<int,double>(basis, Cijk, quad));
106 
107  // Polynomial expansion of u
108  pce_type u(expn);
109  u.term(0,0) = 1.0; // zeroth order term
110  u.term(0,1) = 0.1; // first order term for dimension 0
111  u.term(1,1) = 0.05; // first order term for dimension 1
112  u.term(2,1) = 0.01; // first order term for dimension 2
113 
114  // Compute PCE expansion of function
115  pce_type v = simple_function(u);
116 
117  // Print u and v
118  std::cout << "\tu = ";
119  u.print(std::cout);
120  std::cout << "\tv = ";
121  v.print(std::cout);
122 
123  // Compute moments
124  double mean = v.mean();
125  double std_dev = v.standard_deviation();
126 
127  // Evaluate PCE and function at a point = 0.25 in each dimension
129  for (int i=0; i<d; i++)
130  pt[i] = 0.25;
131  double up = u.evaluate(pt);
132  double vp = simple_function(up);
133  double vp2 = v.evaluate(pt);
134 
135  // Print results
136  std::cout << "\tv mean = " << mean << std::endl;
137  std::cout << "\tv std. dev. = " << std_dev << std::endl;
138  std::cout << "\tv(0.25) (true) = " << vp << std::endl;
139  std::cout << "\tv(0.25) (pce) = " << vp2 << std::endl;
140  }
141  catch (std::exception& e) {
142  std::cout << e.what() << std::endl;
143  }
144 }
ScalarType simple_function(const ScalarType &u)
Stokhos::StandardStorage< int, double > storage_type
Hermite polynomial basis.
Sacado::ETPCE::OrthogPoly< double, Stokhos::StandardStorage< int, double > > pce_type
Data structure storing a sparse 3-tensor C(i,j,k) in a a compressed format.
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
Abstract base class for quadrature methods.
Multivariate orthogonal polynomial basis generated from a total-order complete-polynomial tensor prod...
int main(int argc, char **argv)
Abstract base class for 1-D orthogonal polynomials.
Orthogonal polynomial expansions based on numerical quadrature.
KOKKOS_INLINE_FUNCTION PCE< Storage > log(const PCE< Storage > &a)
Defines quadrature for a tensor product basis by tensor products of 1-D quadrature rules...