Stokhos Package Browser (Single Doxygen Collection)  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Types | Public Member Functions | Private Member Functions | List of all members
Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type > Class Template Referenceabstract

Abstract base class for 1-D orthogonal polynomials. More...

#include <Stokhos_OneDOrthogPolyBasis.hpp>

Inheritance diagram for Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >:
Inheritance graph
[legend]

Public Types

typedef int(* LevelToOrderFnPtr )(int level, int growth)
 Function pointer needed for level_to_order mappings. More...
 

Public Member Functions

 OneDOrthogPolyBasis ()
 Default constructor. More...
 
virtual ~OneDOrthogPolyBasis ()
 Destructor. More...
 
virtual ordinal_type order () const =0
 Return order of basis (largest monomial degree $P$). More...
 
virtual ordinal_type size () const =0
 Return total size of basis (given by order() + 1). More...
 
virtual const Teuchos::Array
< value_type > & 
norm_squared () const =0
 Return array storing norm-squared of each basis polynomial. More...
 
virtual const value_type & norm_squared (ordinal_type i) const =0
 Return norm squared of basis polynomial i. More...
 
virtual Teuchos::RCP
< Stokhos::Dense3Tensor
< ordinal_type, value_type > > 
computeTripleProductTensor () const =0
 Compute triple product tensor. More...
 
virtual Teuchos::RCP
< Stokhos::Sparse3Tensor
< ordinal_type, value_type > > 
computeSparseTripleProductTensor (ordinal_type order) const =0
 Compute triple product tensor. More...
 
virtual Teuchos::RCP
< Teuchos::SerialDenseMatrix
< ordinal_type, value_type > > 
computeDerivDoubleProductTensor () const =0
 Compute derivative double product tensor. More...
 
virtual void evaluateBases (const value_type &point, Teuchos::Array< value_type > &basis_pts) const =0
 Evaluate each basis polynomial at given point point. More...
 
virtual value_type evaluate (const value_type &point, ordinal_type order) const =0
 Evaluate basis polynomial given by order order at given point point. More...
 
virtual void print (std::ostream &os) const
 Print basis to stream os. More...
 
virtual const std::string & getName () const =0
 Return string name of basis. More...
 
virtual void getQuadPoints (ordinal_type quad_order, Teuchos::Array< value_type > &points, Teuchos::Array< value_type > &weights, Teuchos::Array< Teuchos::Array< value_type > > &values) const =0
 Compute quadrature points, weights, and values of basis polynomials at given set of points points. More...
 
virtual ordinal_type quadDegreeOfExactness (ordinal_type n) const =0
 
virtual Teuchos::RCP
< OneDOrthogPolyBasis
< ordinal_type, value_type > > 
cloneWithOrder (ordinal_type p) const =0
 Clone this object with the option of building a higher order basis. More...
 
virtual ordinal_type coefficientGrowth (ordinal_type n) const =0
 Evaluate coefficient growth rule for Smolyak-type bases. More...
 
virtual ordinal_type pointGrowth (ordinal_type n) const =0
 Evaluate point growth rule for Smolyak-type bases. More...
 
virtual LevelToOrderFnPtr getSparseGridGrowthRule () const =0
 Get sparse grid level_to_order mapping function. More...
 
virtual void setSparseGridGrowthRule (LevelToOrderFnPtr ptr)=0
 Set sparse grid rule. More...
 

Private Member Functions

 OneDOrthogPolyBasis (const OneDOrthogPolyBasis &)
 
OneDOrthogPolyBasisoperator= (const OneDOrthogPolyBasis &b)
 

Detailed Description

template<typename ordinal_type, typename value_type>
class Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >

Abstract base class for 1-D orthogonal polynomials.

This class provides an abstract interface for univariate orthogonal polynomials. Orthogonality is defined by the inner product

\[ (f,g) = \langle fg \rangle = \int_{-\infty}^{\infty} f(x)g(x) \rho(x) dx \]

where $\rho$ is the density function of the measure associated with the orthogonal polynomials. See Stokhos::RecurrenceBasis for a general implementation of this interface based on the three-term recurrence satisfied by these polynomials. Multivariate polynomials can be formed from a collection of univariate polynomials through tensor products (see Stokhos::CompletePolynomialBasis).

Like most classes in Stokhos, the class is templated on the ordinal and value types. Typically ordinal_type = int and value_type = double.

Definition at line 81 of file Stokhos_OneDOrthogPolyBasis.hpp.

Member Typedef Documentation

template<typename ordinal_type, typename value_type>
typedef int( * Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::LevelToOrderFnPtr)(int level, int growth)

Function pointer needed for level_to_order mappings.

Definition at line 204 of file Stokhos_OneDOrthogPolyBasis.hpp.

Constructor & Destructor Documentation

template<typename ordinal_type, typename value_type>
Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::OneDOrthogPolyBasis ( )
inline

Default constructor.

Definition at line 85 of file Stokhos_OneDOrthogPolyBasis.hpp.

template<typename ordinal_type, typename value_type>
virtual Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::~OneDOrthogPolyBasis ( )
inlinevirtual

Destructor.

Definition at line 88 of file Stokhos_OneDOrthogPolyBasis.hpp.

template<typename ordinal_type, typename value_type>
Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::OneDOrthogPolyBasis ( const OneDOrthogPolyBasis< ordinal_type, value_type > &  )
private

Member Function Documentation

template<typename ordinal_type, typename value_type>
virtual ordinal_type Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::order ( ) const
pure virtual

Return order of basis (largest monomial degree $P$).

Implemented in Stokhos::RecurrenceBasis< ordinal_type, value_type >, and Stokhos::RecurrenceBasis< OrdinalType, ValueType >.

template<typename ordinal_type, typename value_type>
virtual ordinal_type Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::size ( ) const
pure virtual
template<typename ordinal_type, typename value_type>
virtual const Teuchos::Array<value_type>& Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::norm_squared ( ) const
pure virtual

Return array storing norm-squared of each basis polynomial.

Entry $l$ of returned array is given by $\langle\psi_l^2\rangle$ for $l=0,\dots,P$ where $P$ is given by order().

Implemented in Stokhos::RecurrenceBasis< ordinal_type, value_type >, and Stokhos::RecurrenceBasis< OrdinalType, ValueType >.

template<typename ordinal_type, typename value_type>
virtual const value_type& Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::norm_squared ( ordinal_type  i) const
pure virtual
template<typename ordinal_type, typename value_type>
virtual Teuchos::RCP< Stokhos::Dense3Tensor<ordinal_type, value_type> > Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::computeTripleProductTensor ( ) const
pure virtual

Compute triple product tensor.

The $(i,j,k)$ entry of the tensor $C_{ijk}$ is given by $C_{ijk} = \langle\Psi_i\Psi_j\Psi_k\rangle$ where $\Psi_l$ represents basis polynomial $l$ and $i,j=0,\dots,P$ where $P$ is size()-1 and $k=0,\dots,p$ where $p$ is the supplied order.

Implemented in Stokhos::RecurrenceBasis< ordinal_type, value_type >, and Stokhos::RecurrenceBasis< OrdinalType, ValueType >.

template<typename ordinal_type, typename value_type>
virtual Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> > Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::computeSparseTripleProductTensor ( ordinal_type  order) const
pure virtual

Compute triple product tensor.

The $(i,j,k)$ entry of the tensor $C_{ijk}$ is given by $C_{ijk} = \langle\Psi_i\Psi_j\Psi_k\rangle$ where $\Psi_l$ represents basis polynomial $l$ and $i,j=0,\dots,P$ where $P$ is size()-1 and $k=0,\dots,p$ where $p$ is the supplied order.

Implemented in Stokhos::RecurrenceBasis< ordinal_type, value_type >, and Stokhos::RecurrenceBasis< OrdinalType, ValueType >.

template<typename ordinal_type, typename value_type>
virtual Teuchos::RCP< Teuchos::SerialDenseMatrix<ordinal_type, value_type> > Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::computeDerivDoubleProductTensor ( ) const
pure virtual

Compute derivative double product tensor.

The $(i,j)$ entry of the tensor $B_{ij}$ is given by $B_{ij} = \langle\psi_i'\psi_j\rangle$ where $\psi_l$ represents basis polynomial $l$ and $i,j=0,\dots,P$ where $P$ is the order of the basis.

Implemented in Stokhos::RecurrenceBasis< ordinal_type, value_type >, and Stokhos::RecurrenceBasis< OrdinalType, ValueType >.

template<typename ordinal_type, typename value_type>
virtual void Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::evaluateBases ( const value_type &  point,
Teuchos::Array< value_type > &  basis_pts 
) const
pure virtual

Evaluate each basis polynomial at given point point.

Size of returned array is given by size(), and coefficients are ordered from order 0 up to order order().

Implemented in Stokhos::RecurrenceBasis< ordinal_type, value_type >, and Stokhos::RecurrenceBasis< OrdinalType, ValueType >.

template<typename ordinal_type, typename value_type>
virtual value_type Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::evaluate ( const value_type &  point,
ordinal_type  order 
) const
pure virtual

Evaluate basis polynomial given by order order at given point point.

Implemented in Stokhos::RecurrenceBasis< ordinal_type, value_type >, and Stokhos::RecurrenceBasis< OrdinalType, ValueType >.

template<typename ordinal_type, typename value_type>
virtual void Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::print ( std::ostream &  os) const
inlinevirtual
template<typename ordinal_type, typename value_type>
virtual const std::string& Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::getName ( ) const
pure virtual
template<typename ordinal_type, typename value_type>
virtual void Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::getQuadPoints ( ordinal_type  quad_order,
Teuchos::Array< value_type > &  points,
Teuchos::Array< value_type > &  weights,
Teuchos::Array< Teuchos::Array< value_type > > &  values 
) const
pure virtual
template<typename ordinal_type, typename value_type>
virtual ordinal_type Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::quadDegreeOfExactness ( ordinal_type  n) const
pure virtual
template<typename ordinal_type, typename value_type>
virtual Teuchos::RCP<OneDOrthogPolyBasis<ordinal_type,value_type> > Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::cloneWithOrder ( ordinal_type  p) const
pure virtual

Clone this object with the option of building a higher order basis.

This method is following the Prototype pattern (see Design Pattern's textbook). The slight variation is that it allows the order of the polynomial to be modified, otherwise an exact copy is formed. The use case for this is creating basis functions for column indices in a spatially varying adaptive refinement context.

Implemented in Stokhos::JacobiBasis< ordinal_type, value_type >, Stokhos::LanczosPCEBasis< ordinal_type, value_type >, Stokhos::LanczosProjPCEBasis< ordinal_type, value_type >, Stokhos::LanczosPCEBasis< OrdinalType, ValueType >, Stokhos::LanczosProjPCEBasis< OrdinalType, ValueType >, Stokhos::StieltjesPCEBasis< ordinal_type, value_type >, Stokhos::StieltjesPCEBasis< OrdinalType, ValueType >, Stokhos::ClenshawCurtisLegendreBasis< ordinal_type, value_type >, Stokhos::GaussPattersonLegendreBasis< ordinal_type, value_type >, Stokhos::HouseTriDiagPCEBasis< ordinal_type, value_type >, Stokhos::MonoProjPCEBasis< ordinal_type, value_type >, Stokhos::StieltjesBasis< ordinal_type, value_type, func_type >, Stokhos::HouseTriDiagPCEBasis< OrdinalType, ValueType >, Stokhos::MonoProjPCEBasis< OrdinalType, ValueType >, Stokhos::DiscretizedStieltjesBasis< ordinal_type, value_type >, Stokhos::RysBasis< ordinal_type, value_type >, Stokhos::HermiteBasis< ordinal_type, value_type >, Stokhos::LegendreBasis< ordinal_type, value_type >, Stokhos::HermiteBasis< OrdinalType, ValueType >, and Stokhos::LegendreBasis< OrdinalType, ValueType >.

template<typename ordinal_type, typename value_type>
virtual ordinal_type Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::coefficientGrowth ( ordinal_type  n) const
pure virtual
template<typename ordinal_type, typename value_type>
virtual ordinal_type Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::pointGrowth ( ordinal_type  n) const
pure virtual
template<typename ordinal_type, typename value_type>
virtual LevelToOrderFnPtr Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::getSparseGridGrowthRule ( ) const
pure virtual

Get sparse grid level_to_order mapping function.

Predefined functions are: webbur::level_to_order_linear_wn Symmetric Gaussian linear growth webbur::level_to_order_linear_nn Asymmetric Gaussian linear growth webbur::level_to_order_exp_cc Clenshaw-Curtis exponential growth webbur::level_to_order_exp_gp Gauss-Patterson exponential growth webbur::level_to_order_exp_hgk Genz-Keister exponential growth webbur::level_to_order_exp_f2 Fejer-2 exponential growth

Implemented in Stokhos::RecurrenceBasis< ordinal_type, value_type >, and Stokhos::RecurrenceBasis< OrdinalType, ValueType >.

template<typename ordinal_type, typename value_type>
virtual void Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::setSparseGridGrowthRule ( LevelToOrderFnPtr  ptr)
pure virtual

Set sparse grid rule.

template<typename ordinal_type, typename value_type>
OneDOrthogPolyBasis& Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type >::operator= ( const OneDOrthogPolyBasis< ordinal_type, value_type > &  b)
private

The documentation for this class was generated from the following file: