48 template <
typename ordinal_type,
typename value_type>
54 bool use_pce_quad_points_,
56 bool project_integrals_,
61 pce_weights(quad->getQuadWeights()),
62 basis_values(quad->getBasisAtQuadPoints()),
65 use_pce_quad_points(use_pce_quad_points_),
66 fromStieltjesMat(p+1,pce->size()),
67 project_integrals(project_integrals_),
76 template <
typename ordinal_type,
typename value_type>
82 template <
typename ordinal_type,
typename value_type>
90 #ifdef STOKHOS_TEUCHOS_TIME_MONITOR
95 if (use_pce_quad_points) {
96 quad_points = pce_vals;
97 quad_weights = pce_weights;
98 quad_values = phi_vals;
108 if (quad_order > 2*this->p)
109 quad_order = 2*this->p;
116 if (quad_weights.
size() < num_points) {
118 quad_weights.
resize(num_points);
119 quad_points.
resize(num_points);
120 quad_values.resize(num_points);
123 quad_points[i] = quad_points[0];
124 quad_values[i].
resize(this->p+1);
125 this->evaluateBases(quad_points[i], quad_values[i]);
130 template <
typename ordinal_type,
typename value_type>
144 stieltjes(0, n, pce_weights, pce_vals, alpha, beta, nrm, vals);
157 template <
typename ordinal_type,
typename value_type>
164 quad->getQuadPoints();
166 pce_vals.resize(nqp);
167 phi_vals.resize(nqp);
169 pce_vals[i] = pce->evaluate(quad_points[i], basis_values[i]);
170 phi_vals[i].resize(this->p+1);
173 if (project_integrals)
174 phi_pce_coeffs.resize(basis->size());
179 fromStieltjesMat.putScalar(0.0);
183 fromStieltjesMat(i,
j) +=
184 pce_weights[k]*phi_vals[k][i]*basis_values[k][
j];
185 fromStieltjesMat(i,
j) /= basis->norm_squared(
j);
190 template <
typename ordinal_type,
typename value_type>
202 #ifdef STOKHOS_TEUCHOS_TIME_MONITOR
209 if (project_integrals)
210 integrateBasisSquaredProj(0, a, b, weights, points, phi_vals, val1, val2);
212 integrateBasisSquared(0, a, b, weights, points, phi_vals, val1, val2);
219 if (project_integrals)
220 integrateBasisSquaredProj(i, a, b, weights, points, phi_vals, val1, val2);
222 integrateBasisSquared(i, a, b, weights, points, phi_vals, val1, val2);
226 "Stokhos::StieltjesPCEBasis::stieltjes(): "
227 <<
" Polynomial " << i <<
" out of " << nfinish
228 <<
" has norm " << val1
229 <<
"! Try increasing number of quadrature points");
232 b[i] = nrm[i]/nrm[i-1];
239 template <
typename ordinal_type,
typename value_type>
250 evaluateRecurrence(k, a, b, points, phi_vals);
255 val1 += weights[i]*phi_vals[i][k]*phi_vals[i][k];
256 val2 += weights[i]*phi_vals[i][k]*phi_vals[i][k]*points[i];
260 template <
typename ordinal_type,
typename value_type>
275 values[i][k] = points[i] - a[k-1];
279 (points[i] - a[k-1])*values[i][k-1] - b[k-1]*values[i][k-2];
282 template <
typename ordinal_type,
typename value_type>
299 evaluateRecurrence(k, a, b, points, phi_vals);
303 c += weights[i]*phi_vals[i][k]*basis_values[i][
j];
305 phi_pce_coeffs[
j] = c;
311 val1 += phi_pce_coeffs[
j]*phi_pce_coeffs[
j]*norms[
j];
316 k_it != Cijk->k_end(); ++k_it) {
319 j_it != Cijk->j_end(k_it); ++j_it) {
322 i_it != Cijk->i_end(j_it); ++i_it) {
325 val2 += phi_pce_coeffs[i]*phi_pce_coeffs[
j]*(*pce)[l]*c;
331 template <
typename ordinal_type,
typename value_type>
338 fromStieltjesMat.numCols(), 1.0, fromStieltjesMat.values(),
339 fromStieltjesMat.numRows(), in, 1, 0.0, out, 1);
342 template <
typename ordinal_type,
typename value_type>
350 template <
typename ordinal_type,
typename value_type>
356 pce_weights(quad->getQuadWeights()),
357 basis_values(quad->getBasisAtQuadPoints()),
358 pce_vals(sbasis.pce_vals),
360 use_pce_quad_points(sbasis.use_pce_quad_points),
361 fromStieltjesMat(p+1,pce->size()),
362 project_integrals(sbasis.project_integrals),
virtual Teuchos::RCP< OneDOrthogPolyBasis< ordinal_type, value_type > > cloneWithOrder(ordinal_type p) const
Clone this object with the option of building a higher order basis.
#define TEUCHOS_FUNC_TIME_MONITOR(FUNCNAME)
Implementation of OneDOrthogPolyBasis based on the general three-term recurrence relationship: for ...
void integrateBasisSquaredProj(ordinal_type k, const Teuchos::Array< value_type > &a, const Teuchos::Array< value_type > &b, const Teuchos::Array< value_type > &weights, const Teuchos::Array< value_type > &points, Teuchos::Array< Teuchos::Array< value_type > > &phi_vals, value_type &val1, value_type &val2) const
Compute and by projecting onto original PCE basis.
Data structure storing a sparse 3-tensor C(i,j,k) in a a compressed format.
void GEMV(ETransp trans, const OrdinalType &m, const OrdinalType &n, const alpha_type alpha, const A_type *A, const OrdinalType &lda, const x_type *x, const OrdinalType &incx, const beta_type beta, ScalarType *y, const OrdinalType &incy) const
virtual void getQuadPoints(ordinal_type quad_order, Teuchos::Array< value_type > &points, Teuchos::Array< value_type > &weights, Teuchos::Array< Teuchos::Array< value_type > > &values) const
Compute quadrature points, weights, and values of basis polynomials at given set of points points...
#define TEUCHOS_TEST_FOR_EXCEPTION(throw_exception_test, Exception, msg)
StieltjesPCEBasis(ordinal_type p, const Teuchos::RCP< const Stokhos::OrthogPolyApprox< ordinal_type, value_type > > &pce, const Teuchos::RCP< const Stokhos::Quadrature< ordinal_type, value_type > > &quad, bool use_pce_quad_points, bool normalize=false, bool project_integrals=false, const Teuchos::RCP< const Stokhos::Sparse3Tensor< ordinal_type, value_type > > &Cijk=Teuchos::null)
Constructor.
Bi-directional iterator for traversing a sparse array.
Generates three-term recurrence using the Discretized Stieltjes procedure applied to a polynomial cha...
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
Abstract base class for quadrature methods.
KOKKOS_INLINE_FUNCTION PCE< Storage > ceil(const PCE< Storage > &a)
~StieltjesPCEBasis()
Destructor.
void resize(size_type new_size, const value_type &x=value_type())
void evaluateRecurrence(ordinal_type k, const Teuchos::Array< value_type > &a, const Teuchos::Array< value_type > &b, const Teuchos::Array< value_type > &points, Teuchos::Array< Teuchos::Array< value_type > > &values) const
Evaluate polynomials via 3-term recurrence.
virtual void setup()
Setup basis after computing recurrence coefficients.
virtual bool computeRecurrenceCoefficients(ordinal_type n, Teuchos::Array< value_type > &alpha, Teuchos::Array< value_type > &beta, Teuchos::Array< value_type > &delta, Teuchos::Array< value_type > &gamma) const
Compute recurrence coefficients.
virtual void getQuadPoints(ordinal_type quad_order, Teuchos::Array< value_type > &points, Teuchos::Array< value_type > &weights, Teuchos::Array< Teuchos::Array< value_type > > &values) const
Get Gauss quadrature points, weights, and values of basis at points.
virtual void setup()
Setup basis after computing recurrence coefficients.
void transformCoeffsFromStieltjes(const value_type *in, value_type *out) const
Map expansion coefficients from this basis to original.
void integrateBasisSquared(ordinal_type k, const Teuchos::Array< value_type > &a, const Teuchos::Array< value_type > &b, const Teuchos::Array< value_type > &weights, const Teuchos::Array< value_type > &points, Teuchos::Array< Teuchos::Array< value_type > > &phi_vals, value_type &val1, value_type &val2) const
Compute and .
void stieltjes(ordinal_type nstart, ordinal_type nfinish, const Teuchos::Array< value_type > &weights, const Teuchos::Array< value_type > &points, Teuchos::Array< value_type > &a, Teuchos::Array< value_type > &b, Teuchos::Array< value_type > &nrm, Teuchos::Array< Teuchos::Array< value_type > > &phi_vals) const
Compute 3-term recurrence using Stieljtes procedure.