Stokhos Package Browser (Single Doxygen Collection)  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Stokhos_GaussPattersonLegendreBasisImp.hpp
Go to the documentation of this file.
1 // $Id$
2 // $Source$
3 // @HEADER
4 // ***********************************************************************
5 //
6 // Stokhos Package
7 // Copyright (2009) Sandia Corporation
8 //
9 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
10 // license for use of this work by or on behalf of the U.S. Government.
11 //
12 // Redistribution and use in source and binary forms, with or without
13 // modification, are permitted provided that the following conditions are
14 // met:
15 //
16 // 1. Redistributions of source code must retain the above copyright
17 // notice, this list of conditions and the following disclaimer.
18 //
19 // 2. Redistributions in binary form must reproduce the above copyright
20 // notice, this list of conditions and the following disclaimer in the
21 // documentation and/or other materials provided with the distribution.
22 //
23 // 3. Neither the name of the Corporation nor the names of the
24 // contributors may be used to endorse or promote products derived from
25 // this software without specific prior written permission.
26 //
27 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
28 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
31 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
32 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
33 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
34 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
35 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
36 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
37 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 //
39 // Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
40 //
41 // ***********************************************************************
42 // @HEADER
43 
44 #ifdef HAVE_STOKHOS_DAKOTA
45 #include "sandia_rules.hpp"
46 #endif
48 
49 template <typename ordinal_type, typename value_type>
51 GaussPattersonLegendreBasis(ordinal_type p, bool normalize, bool isotropic_) :
52  LegendreBasis<ordinal_type, value_type>(p, normalize),
53  isotropic(isotropic_)
54 {
55 #ifdef HAVE_STOKHOS_DAKOTA
56  this->setSparseGridGrowthRule(webbur::level_to_order_exp_gp);
57 #endif
58 }
59 
60 template <typename ordinal_type, typename value_type>
63  const GaussPattersonLegendreBasis& basis) :
65  isotropic(basis.isotropic)
66 {
67 }
68 
69 template <typename ordinal_type, typename value_type>
72 {
73 }
74 
75 template <typename ordinal_type, typename value_type>
76 void
79  Teuchos::Array<value_type>& quad_points,
80  Teuchos::Array<value_type>& quad_weights,
81  Teuchos::Array< Teuchos::Array<value_type> >& quad_values) const
82 {
83 #ifdef HAVE_STOKHOS_DAKOTA
84  // Gauss-Patterson points have the following structure
85  // (cf. http://people.sc.fsu.edu/~jburkardt/f_src/patterson_rule/patterson_rule.html):
86  // Level l Num points n Precision p
87  // -----------------------------------
88  // 0 1 1
89  // 1 3 5
90  // 2 7 11
91  // 3 15 23
92  // 4 31 47
93  // 5 63 95
94  // 6 127 191
95  // 7 255 383
96  // Thus for l > 0, n = 2^{l+1}-1 and p = 3*2^l-1. So for a given quadrature
97  // order p, we find the smallest l s.t. 3*s^l-1 >= p and then compute the
98  // number of points n from the above. In this case, l = ceil(log2((p+1)/3))
99  ordinal_type num_points;
100  if (quad_order <= ordinal_type(1))
101  num_points = 1;
102  else {
103  ordinal_type l = std::ceil(std::log((quad_order+1.0)/3.0)/std::log(2.0));
104  num_points = (1 << (l+1)) - 1; // std::pow(2,l+1)-1;
105  }
106 
107  quad_points.resize(num_points);
108  quad_weights.resize(num_points);
109  quad_values.resize(num_points);
110 
111  webbur::patterson_lookup(num_points, &quad_points[0], &quad_weights[0]);
112 
113  for (ordinal_type i=0; i<num_points; i++) {
114  quad_weights[i] *= 0.5; // scale to unit measure
115  quad_values[i].resize(this->p+1);
116  this->evaluateBases(quad_points[i], quad_values[i]);
117  }
118 
119 #else
121  true, std::logic_error, "Clenshaw-Curtis requires TriKota to be enabled!");
122 #endif
123 }
124 
125 template <typename ordinal_type, typename value_type>
129 {
130  // Based on the above structure, we find the largest l s.t. 2^{l+1}-1 <= n,
131  // which is floor(log2(n+1)-1) and compute p = 3*2^l-1
132  if (n == ordinal_type(1))
133  return 1;
134  ordinal_type l = std::floor(std::log(n+1.0)/std::log(2.0)-1.0);
135  return (3 << l) - 1; // 3*std::pow(2,l)-1;
136 }
137 
138 template <typename ordinal_type, typename value_type>
142 {
143  return
145 }
146 
147 template <typename ordinal_type, typename value_type>
151 {
152  // Gauss-Patterson rules have precision 3*2^l-1, which is odd.
153  // Since discrete orthogonality requires integrating polynomials of
154  // order 2*p, setting p = 3*2^{l-1}-1 will yield the largest p such that
155  // 2*p <= 3*2^l-1
156  if (n == 0)
157  return 0;
158  return (3 << (n-1)) - 1; // 3*std::pow(2,n-1) - 1;
159 }
160 
161 template <typename ordinal_type, typename value_type>
165 {
166  return n;
167 }
virtual Teuchos::RCP< OneDOrthogPolyBasis< ordinal_type, value_type > > cloneWithOrder(ordinal_type p) const
Clone this object with the option of building a higher order basis.
virtual ordinal_type pointGrowth(ordinal_type n) const
Evaluate point growth rule for Smolyak-type bases.
#define TEUCHOS_TEST_FOR_EXCEPTION(throw_exception_test, Exception, msg)
virtual ordinal_type quadDegreeOfExactness(ordinal_type n) const
virtual ordinal_type coefficientGrowth(ordinal_type n) const
Evaluate coefficient growth rule for Smolyak-type bases.
Legendre polynomial basis using Gauss-Patterson quadrature points.
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
KOKKOS_INLINE_FUNCTION PCE< Storage > ceil(const PCE< Storage > &a)
void resize(size_type new_size, const value_type &x=value_type())
Legendre polynomial basis.
GaussPattersonLegendreBasis(ordinal_type p, bool normalize=false, bool isotropic=false)
Constructor.
virtual void setSparseGridGrowthRule(LevelToOrderFnPtr ptr)
Set sparse grid rule.
KOKKOS_INLINE_FUNCTION PCE< Storage > log(const PCE< Storage > &a)
virtual void getQuadPoints(ordinal_type quad_order, Teuchos::Array< value_type > &points, Teuchos::Array< value_type > &weights, Teuchos::Array< Teuchos::Array< value_type > > &values) const
Compute quadrature points, weights, and values of basis polynomials at given set of points points...