ROL
gross-pitaevskii/example_02.cpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
82 #include<algorithm>
83 #include<string>
84 #include"example_02.hpp"
86 #include "ROL_CompositeStep.hpp"
87 
88 typedef double RealT;
89 
90 int main(int argc, char **argv) {
91 
92 
93  // Set up MPI
94  Teuchos::GlobalMPISession mpiSession(&argc, &argv);
95 
96  // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided.
97  int iprint = argc - 1;
98  ROL::Ptr<std::ostream> outStream;
99  ROL::nullstream bhs; // outputs nothing
100  if (iprint > 0)
101  outStream = ROL::makePtrFromRef(std::cout);
102  else
103  outStream = ROL::makePtrFromRef(bhs);
104 
105  int errorFlag = 0;
106 
107 
108  ROL::ParameterList parlist;
109  std::string paramfile = "parameters.xml";
110  auto gplist = ROL::getParametersFromXmlFile( paramfile );
111 
112  int nx = gplist->get("Interior Grid Points",100);
113  RealT gnl = gplist->get("Nonlinearity Coefficient g",50.0);
114  bool exactsolve = gplist->get("Solve Exact Augmented System",false);
115 
116  // Command line option to override parameters.xml for solving the exact augmented system
117  if(argc > 1) {
118  std::string input = argv[1];
119  std::transform(input.begin(), input.end(), input.begin(), ::tolower);
120  if(input=="exactsolve") {
121  exactsolve = true;
122  }
123  }
124 
125 
126  // Grid spacing
127  RealT dx = 1.0/(nx+1);
128 
129  // Finite difference class
130  ROL::Ptr<FiniteDifference<RealT> > fd = ROL::makePtr<FiniteDifference<RealT>>(nx,dx);
131 
132  // Pointer to linspace type vector \f$x_i = \frac{i+1}{n_x+1}\f$ where \f$i=0,\hdots,n_x\f$
133  ROL::Ptr<std::vector<RealT> > xi_ptr = ROL::makePtr<std::vector<RealT>>(nx, 0.0);
134 
135  for(int i=0; i<nx; ++i) {
136  (*xi_ptr)[i] = RealT(i+1)/(nx+1);
137  }
138 
139  // Pointer to potential vector (quadratic centered at x=0.5)
140  ROL::Ptr<std::vector<RealT> > V_ptr = ROL::makePtr<std::vector<RealT>>(nx, 0.0);
141  for(int i=0; i<nx; ++i) {
142  (*V_ptr)[i] = 100.0*pow((*xi_ptr)[i]-0.5,2);
143  }
144 
145  StdVector<RealT> V(V_ptr);
146 
147  // Iteration Vector (pointer to optimzation vector)
148  ROL::Ptr<std::vector<RealT> > psi_ptr = ROL::makePtr<std::vector<RealT>>(nx, 0.0);
149  OptStdVector<RealT> psi(psi_ptr,fd);
150 
151  // Set Initial Guess (normalized)
152  RealT sqrt30 = sqrt(30);
153 
154  for (int i=0; i<nx; i++) {
155  (*psi_ptr)[i] = sqrt30*(*xi_ptr)[i]*(1.0-(*xi_ptr)[i]);
156  }
157 
158 
159  // Constraint value (scalar)
160  ROL::Ptr<std::vector<RealT> > c_ptr = ROL::makePtr<std::vector<RealT>>(1, 0.0);
161  ConStdVector<RealT> c(c_ptr);
162 
163  // Lagrange multiplier value (scalar)
164  ROL::Ptr<std::vector<RealT> > lam_ptr = ROL::makePtr<std::vector<RealT>>(1, 0.0);
165  ConDualStdVector<RealT> lam(lam_ptr);
166 
167  // Gradient
168  ROL::Ptr<std::vector<RealT> > g_ptr = ROL::makePtr<std::vector<RealT>>(nx, 0.0);
169  OptDualStdVector<RealT> g(g_ptr,fd);
170 
171  // Instantiate objective function
173 
174  // Instantiate normalization constraint
176  ConStdVector<RealT>,ConDualStdVector<RealT> > constr(nx,dx,fd,exactsolve);
177 
178 
179  // Define algorithm.
180  std::string stepname = "Composite Step";
181  parlist.sublist("Step").sublist(stepname).sublist("Optimality System Solver").set("Nominal Relative Tolerance",1e-4);
182  parlist.sublist("Step").sublist(stepname).sublist("Optimality System Solver").set("Fix Tolerance",true);
183  parlist.sublist("Step").sublist(stepname).sublist("Tangential Subproblem Solver").set("Iteration Limit",20);
184  parlist.sublist("Step").sublist(stepname).sublist("Tangential Subproblem Solver").set("Relative Tolerance",1e-2);
185  parlist.sublist("Step").sublist(stepname).set("Output Level",0);
186  parlist.sublist("Status Test").set("Gradient Tolerance",1.e-12);
187  parlist.sublist("Status Test").set("Constraint Tolerance",1.e-12);
188  parlist.sublist("Status Test").set("Step Tolerance",1.e-14);
189  parlist.sublist("Status Test").set("Iteration Limit",100);
190  ROL::Ptr<ROL::StatusTest<RealT>>
191  status = ROL::makePtr<ROL::ConstraintStatusTest<RealT>>(parlist);
192  ROL::Ptr<ROL::Step<RealT>>
193  step = ROL::makePtr<ROL::CompositeStep<RealT>>(parlist);
194  ROL::Algorithm<RealT> algo(step,status,false);
195 
196  // Run algorithm.
197  algo.run(psi, g, lam, c, obj, constr, true, *outStream);
198 
199  if(algo.getState()->gnorm>1e-6) {
200  errorFlag += 1;
201  }
202 
203  if (errorFlag != 0)
204  std::cout << "End Result: TEST FAILED\n";
205  else
206  std::cout << "End Result: TEST PASSED\n";
207 
208  return 0;
209 }
Vector< Real > V
Provides the ROL::Vector interface for scalar values, to be used, for example, with scalar constraint...
Provides an interface to run optimization algorithms.
basic_nullstream< char, char_traits< char >> nullstream
Definition: ROL_Stream.hpp:72
int main(int argc, char *argv[])