ROL
Public Member Functions | Private Types | Private Attributes | List of all members
ConDualStdVector< Real, Element > Class Template Reference

#include <example_02.hpp>

+ Inheritance diagram for ConDualStdVector< Real, Element >:

Public Member Functions

 ConDualStdVector (const ROL::Ptr< std::vector< Element > > &std_vec)
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
ROL::Ptr< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
ROL::Ptr< const std::vector
< Element > > 
getVector () const
 
ROL::Ptr< std::vector< Element > > getVector ()
 
ROL::Ptr< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
 ConDualStdVector (const ROL::Ptr< std::vector< Element > > &std_vec)
 
void plus (const Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
ROL::Ptr< Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
ROL::Ptr< const std::vector
< Element > > 
getVector () const
 
ROL::Ptr< std::vector< Element > > getVector ()
 
ROL::Ptr< Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
- Public Member Functions inherited from ROL::Vector< Real >
virtual ~Vector ()
 
virtual void axpy (const Real alpha, const Vector &x)
 Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\). More...
 
virtual void zero ()
 Set to zero vector. More...
 
virtual void set (const Vector &x)
 Set \(y \leftarrow x\) where \(y = \mathtt{*this}\). More...
 
virtual void applyUnary (const Elementwise::UnaryFunction< Real > &f)
 
virtual void applyBinary (const Elementwise::BinaryFunction< Real > &f, const Vector &x)
 
virtual Real reduce (const Elementwise::ReductionOp< Real > &r) const
 
virtual void print (std::ostream &outStream) const
 
virtual void setScalar (const Real C)
 Set \(y \leftarrow C\) where \(C\in\mathbb{R}\). More...
 
virtual void randomize (const Real l=0.0, const Real u=1.0)
 Set vector to be uniform random between [l,u]. More...
 
virtual std::vector< Real > checkVector (const Vector< Real > &x, const Vector< Real > &y, const bool printToStream=true, std::ostream &outStream=std::cout) const
 Verify vector-space methods. More...
 

Private Types

typedef std::vector< Element > vector
 
typedef ROL::Vector< Real > V
 
typedef vector::size_type uint
 
typedef std::vector< Element > vector
 
typedef vector::size_type uint
 

Private Attributes

ROL::Ptr< std::vector< Element > > std_vec_
 
ROL::Ptr< ConStdVector< Real > > dual_vec_
 

Detailed Description

template<class Real, class Element = Real>
class ConDualStdVector< Real, Element >

Definition at line 74 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

Member Typedef Documentation

template<class Real, class Element = Real>
typedef std::vector<Element> ConDualStdVector< Real, Element >::vector
private
template<class Real, class Element = Real>
typedef ROL::Vector<Real> ConDualStdVector< Real, Element >::V
private
template<class Real, class Element = Real>
typedef vector::size_type ConDualStdVector< Real, Element >::uint
private
template<class Real, class Element = Real>
typedef std::vector<Element> ConDualStdVector< Real, Element >::vector
private

Definition at line 376 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
typedef vector::size_type ConDualStdVector< Real, Element >::uint
private

Definition at line 377 of file gross-pitaevskii/example_02.hpp.

Constructor & Destructor Documentation

template<class Real, class Element = Real>
ConDualStdVector< Real, Element >::ConDualStdVector ( const ROL::Ptr< std::vector< Element > > &  std_vec)
inline
template<class Real, class Element = Real>
ConDualStdVector< Real, Element >::ConDualStdVector ( const ROL::Ptr< std::vector< Element > > &  std_vec)
inline

Definition at line 386 of file gross-pitaevskii/example_02.hpp.

Member Function Documentation

template<class Real, class Element = Real>
void ConDualStdVector< Real, Element >::plus ( const ROL::Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 337 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References ConDualStdVector< Real, Element >::dimension(), ConDualStdVector< Real, Element >::getVector(), and ConDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void ConDualStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 346 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References ConDualStdVector< Real, Element >::dimension(), and ConDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real ConDualStdVector< Real, Element >::dot ( const ROL::Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 353 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References ConDualStdVector< Real, Element >::dimension(), ConDualStdVector< Real, Element >::getVector(), and ConDualStdVector< Real, Element >::std_vec_.

Referenced by ConDualStdVector< Real, Element >::norm().

template<class Real, class Element = Real>
Real ConDualStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 364 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References ConDualStdVector< Real, Element >::dot().

template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > ConDualStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 370 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References ConDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
ROL::Ptr<const std::vector<Element> > ConDualStdVector< Real, Element >::getVector ( void  ) const
inline
template<class Real, class Element = Real>
ROL::Ptr<std::vector<Element> > ConDualStdVector< Real, Element >::getVector ( void  )
inline
template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > ConDualStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 382 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References ConDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
int ConDualStdVector< Real, Element >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 390 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References ConDualStdVector< Real, Element >::std_vec_.

Referenced by ConDualStdVector< Real, Element >::dot(), ConDualStdVector< Real, Element >::plus(), and ConDualStdVector< Real, Element >::scale().

template<class Real, class Element = Real>
const ROL::Vector<Real>& ConDualStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 392 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References ConDualStdVector< Real, Element >::dual_vec_.

template<class Real, class Element = Real>
void ConDualStdVector< Real, Element >::plus ( const Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 388 of file gross-pitaevskii/example_02.hpp.

References ConDualStdVector< Real, Element >::getVector().

template<class Real, class Element = Real>
void ConDualStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 397 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
Real ConDualStdVector< Real, Element >::dot ( const Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 404 of file gross-pitaevskii/example_02.hpp.

References ConDualStdVector< Real, Element >::getVector().

template<class Real, class Element = Real>
Real ConDualStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 415 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
ROL::Ptr<Vector<Real> > ConDualStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 421 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
ROL::Ptr<const std::vector<Element> > ConDualStdVector< Real, Element >::getVector ( void  ) const
inline

Definition at line 425 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
ROL::Ptr<std::vector<Element> > ConDualStdVector< Real, Element >::getVector ( void  )
inline

Definition at line 429 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
ROL::Ptr<Vector<Real> > ConDualStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 433 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
int ConDualStdVector< Real, Element >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 440 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
const Vector<Real>& ConDualStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 442 of file gross-pitaevskii/example_02.hpp.

Member Data Documentation

template<class Real, class Element = Real>
ROL::Ptr< std::vector< Element > > ConDualStdVector< Real, Element >::std_vec_
private
template<class Real, class Element = Real>
ROL::Ptr< ConStdVector< Real > > ConDualStdVector< Real, Element >::dual_vec_
mutableprivate

The documentation for this class was generated from the following files: