ROL
Public Member Functions | Private Types | Private Attributes | List of all members
OptStdVector< Real, Element > Class Template Reference

#include <example_02.hpp>

+ Inheritance diagram for OptStdVector< Real, Element >:

Public Member Functions

 OptStdVector (const ROL::Ptr< std::vector< Element > > &std_vec)
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
ROL::Ptr< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
ROL::Ptr< const std::vector
< Element > > 
getVector () const
 
ROL::Ptr< std::vector< Element > > getVector ()
 
ROL::Ptr< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
 OptStdVector (const ROL::Ptr< std::vector< Element > > &std_vec)
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
ROL::Ptr< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
ROL::Ptr< const std::vector
< Element > > 
getVector () const
 
ROL::Ptr< std::vector< Element > > getVector ()
 
ROL::Ptr< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
 OptStdVector (const ROL::Ptr< std::vector< Element > > &std_vec, ROL::Ptr< FiniteDifference< Real > >fd)
 
void plus (const Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const Vector< Real > &x) const
 Modify the dot product between primal variables to be \((u,v)=\int\limits_0^1 \dot u \dot v\,\mathrm{d}x \). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
ROL::Ptr< Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
ROL::Ptr< const vectorgetVector () const
 
ROL::Ptr< vectorgetVector ()
 
ROL::Ptr< Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const Vector< Real > & dual () const
 Modify the dual of vector u to be \(\tilde u = -\ddot u\). More...
 
- Public Member Functions inherited from ROL::Vector< Real >
virtual ~Vector ()
 
virtual void axpy (const Real alpha, const Vector &x)
 Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\). More...
 
virtual void zero ()
 Set to zero vector. More...
 
virtual void set (const Vector &x)
 Set \(y \leftarrow x\) where \(y = \mathtt{*this}\). More...
 
virtual void applyUnary (const Elementwise::UnaryFunction< Real > &f)
 
virtual void applyBinary (const Elementwise::BinaryFunction< Real > &f, const Vector &x)
 
virtual Real reduce (const Elementwise::ReductionOp< Real > &r) const
 
virtual void print (std::ostream &outStream) const
 
virtual void setScalar (const Real C)
 Set \(y \leftarrow C\) where \(C\in\mathbb{R}\). More...
 
virtual void randomize (const Real l=0.0, const Real u=1.0)
 Set vector to be uniform random between [l,u]. More...
 
virtual std::vector< Real > checkVector (const Vector< Real > &x, const Vector< Real > &y, const bool printToStream=true, std::ostream &outStream=std::cout) const
 Verify vector-space methods. More...
 

Private Types

typedef std::vector< Element > vector
 
typedef ROL::Vector< Real > V
 
typedef vector::size_type uint
 
typedef std::vector< Element > vector
 
typedef ROL::Vector< Real > V
 
typedef vector::size_type uint
 
typedef std::vector< Element > vector
 
typedef vector::size_type uint
 

Private Attributes

ROL::Ptr< std::vector< Element > > std_vec_
 
ROL::Ptr< OptDualStdVector
< Real > > 
dual_vec_
 
ROL::Ptr< FiniteDifference
< Real > > 
fd_
 

Detailed Description

template<class Real, class Element = Real>
class OptStdVector< Real, Element >

Definition at line 66 of file dual-spaces/rosenbrock-1/example_01.cpp.

Member Typedef Documentation

template<class Real, class Element = Real>
typedef std::vector<Element> OptStdVector< Real, Element >::vector
private

Definition at line 78 of file dual-spaces/rosenbrock-1/example_01.cpp.

template<class Real, class Element = Real>
typedef ROL::Vector<Real> OptStdVector< Real, Element >::V
private

Definition at line 79 of file dual-spaces/rosenbrock-1/example_01.cpp.

template<class Real, class Element = Real>
typedef vector::size_type OptStdVector< Real, Element >::uint
private

Definition at line 81 of file dual-spaces/rosenbrock-1/example_01.cpp.

template<class Real, class Element = Real>
typedef std::vector<Element> OptStdVector< Real, Element >::vector
private
template<class Real, class Element = Real>
typedef ROL::Vector<Real> OptStdVector< Real, Element >::V
private
template<class Real, class Element = Real>
typedef vector::size_type OptStdVector< Real, Element >::uint
private
template<class Real, class Element = Real>
typedef std::vector<Element> OptStdVector< Real, Element >::vector
private

Definition at line 119 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
typedef vector::size_type OptStdVector< Real, Element >::uint
private

Definition at line 120 of file gross-pitaevskii/example_02.hpp.

Constructor & Destructor Documentation

template<class Real, class Element = Real>
OptStdVector< Real, Element >::OptStdVector ( const ROL::Ptr< std::vector< Element > > &  std_vec)
inline

Definition at line 89 of file dual-spaces/rosenbrock-1/example_01.cpp.

template<class Real, class Element = Real>
OptStdVector< Real, Element >::OptStdVector ( const ROL::Ptr< std::vector< Element > > &  std_vec)
inline
template<class Real, class Element = Real>
OptStdVector< Real, Element >::OptStdVector ( const ROL::Ptr< std::vector< Element > > &  std_vec,
ROL::Ptr< FiniteDifference< Real > >  fd 
)
inline

Definition at line 131 of file gross-pitaevskii/example_02.hpp.

Member Function Documentation

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::plus ( const ROL::Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 91 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 100 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::dot ( const ROL::Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 107 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.

Referenced by OptStdVector< Real, Element >::norm().

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 118 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::dot().

Referenced by main().

template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > OptStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 124 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
ROL::Ptr<const std::vector<Element> > OptStdVector< Real, Element >::getVector ( void  ) const
inline
template<class Real, class Element = Real>
ROL::Ptr<std::vector<Element> > OptStdVector< Real, Element >::getVector ( void  )
inline
template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > OptStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 136 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
int OptStdVector< Real, Element >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 146 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::std_vec_.

Referenced by OptStdVector< Real, Element >::dot(), OptStdVector< Real, Element >::plus(), and OptStdVector< Real, Element >::scale().

template<class Real, class Element = Real>
const ROL::Vector<Real>& OptStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 148 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::dual_vec_.

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::plus ( const ROL::Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 94 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 105 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::dot ( const ROL::Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 112 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 126 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::dot().

template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > OptStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 132 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
ROL::Ptr<const std::vector<Element> > OptStdVector< Real, Element >::getVector ( void  ) const
inline
template<class Real, class Element = Real>
ROL::Ptr<std::vector<Element> > OptStdVector< Real, Element >::getVector ( void  )
inline
template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > OptStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 144 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
int OptStdVector< Real, Element >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 152 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
const ROL::Vector<Real>& OptStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 154 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::dual_vec_.

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::plus ( const Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 134 of file gross-pitaevskii/example_02.hpp.

References OptStdVector< Real, Element >::getVector().

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 143 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::dot ( const Vector< Real > &  x) const
inlinevirtual

Modify the dot product between primal variables to be \((u,v)=\int\limits_0^1 \dot u \dot v\,\mathrm{d}x \).

Implements ROL::Vector< Real >.

Definition at line 152 of file gross-pitaevskii/example_02.hpp.

References OptStdVector< Real, Element >::getVector().

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 168 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
ROL::Ptr<Vector<Real> > OptStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 174 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
ROL::Ptr<const vector> OptStdVector< Real, Element >::getVector ( void  ) const
inline

Definition at line 178 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
ROL::Ptr<vector> OptStdVector< Real, Element >::getVector ( void  )
inline

Definition at line 182 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
ROL::Ptr<Vector<Real> > OptStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 186 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
int OptStdVector< Real, Element >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 193 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
const Vector<Real>& OptStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Modify the dual of vector u to be \(\tilde u = -\ddot u\).

Reimplemented from ROL::Vector< Real >.

Definition at line 197 of file gross-pitaevskii/example_02.hpp.

Member Data Documentation

template<class Real, class Element = Real>
ROL::Ptr< std::vector< Element > > OptStdVector< Real, Element >::std_vec_
private
template<class Real, class Element = Real>
ROL::Ptr< OptDualStdVector< Real > > OptStdVector< Real, Element >::dual_vec_
mutableprivate
template<class Real, class Element = Real>
ROL::Ptr<FiniteDifference<Real> > OptStdVector< Real, Element >::fd_
private

Definition at line 126 of file gross-pitaevskii/example_02.hpp.


The documentation for this class was generated from the following files: