14 #include "Thyra_VectorStdOps.hpp" 
   16 #include "Tempus_config.hpp" 
   17 #include "Tempus_IntegratorBasic.hpp" 
   18 #include "Tempus_StepperLeapfrog.hpp" 
   20 #include "../TestModels/HarmonicOscillatorModel.hpp" 
   21 #include "../TestUtils/Tempus_ConvergenceTestUtils.hpp" 
   28 namespace Tempus_Test {
 
   30 using Teuchos::getParametersFromXmlFile;
 
   34 using Teuchos::rcp_const_cast;
 
   35 using Teuchos::sublist;
 
   46   std::vector<std::string> options;
 
   47   options.push_back(
"Default Parameters");
 
   48   options.push_back(
"ICConsistency and Check");
 
   50   for (
const auto& option : options) {
 
   53         getParametersFromXmlFile(
"Tempus_Leapfrog_SinCos.xml");
 
   62     stepper->setModel(model);
 
   63     if (option == 
"ICConsistency and Check") {
 
   64       stepper->setICConsistency(
"Consistent");
 
   65       stepper->setICConsistencyCheck(
true);
 
   67     stepper->initialize();
 
   73     timeStepControl->setInitIndex(tscPL.
get<
int>(
"Initial Time Index"));
 
   74     timeStepControl->setInitTime(tscPL.
get<
double>(
"Initial Time"));
 
   75     timeStepControl->setFinalTime(tscPL.
get<
double>(
"Final Time"));
 
   76     timeStepControl->setInitTimeStep(dt);
 
   77     timeStepControl->initialize();
 
   80     auto inArgsIC = model->getNominalValues();
 
   86     auto icState = Tempus::createSolutionStateX<double>(icX, icXDot, icXDotDot);
 
   87     icState->setTime(timeStepControl->getInitTime());
 
   88     icState->setIndex(timeStepControl->getInitIndex());
 
   89     icState->setTimeStep(0.0);
 
   90     icState->setOrder(stepper->getOrder());
 
   95     solutionHistory->setName(
"Forward States");
 
   97     solutionHistory->setStorageLimit(2);
 
   98     solutionHistory->addState(icState);
 
  101     stepper->setInitialConditions(solutionHistory);
 
  105         Tempus::createIntegratorBasic<double>();
 
  106     integrator->setStepper(stepper);
 
  107     integrator->setTimeStepControl(timeStepControl);
 
  108     integrator->setSolutionHistory(solutionHistory);
 
  110     integrator->initialize();
 
  113     bool integratorStatus = integrator->advanceTime();
 
  117     double time      = integrator->getTime();
 
  118     double timeFinal = pl->
sublist(
"Default Integrator")
 
  120                            .
get<
double>(
"Final Time");
 
  126         model->getExactSolution(time).get_x();
 
  130     Thyra::V_StVpStV(xdiff.
ptr(), 1.0, *x_exact, -1.0, *(x));
 
  133     out << 
"  Stepper = " << stepper->description() << 
"\n            with " 
  134         << option << std::endl;
 
  135     out << 
"  =========================" << std::endl;
 
  136     out << 
"  Exact solution   : " << get_ele(*(x_exact), 0) << std::endl;
 
  137     out << 
"  Computed solution: " << get_ele(*(x), 0) << std::endl;
 
  138     out << 
"  Difference       : " << get_ele(*(xdiff), 0) << std::endl;
 
  139     out << 
"  =========================" << std::endl;
 
  140     TEST_FLOATING_EQUALITY(get_ele(*(x), 0), 0.167158, 1.0e-4);
 
  149   std::vector<RCP<Thyra::VectorBase<double>>> solutions;
 
  150   std::vector<RCP<Thyra::VectorBase<double>>> solutionsDot;
 
  151   std::vector<double> StepSize;
 
  152   std::vector<double> xErrorNorm;
 
  153   std::vector<double> xDotErrorNorm;
 
  154   const int nTimeStepSizes = 9;
 
  159       getParametersFromXmlFile(
"Tempus_Leapfrog_SinCos.xml");
 
  170   double dt = pl->
sublist(
"Default Integrator")
 
  172                   .
get<
double>(
"Initial Time Step");
 
  175   for (
int n = 0; n < nTimeStepSizes; n++) {
 
  178     out << 
"\n \n time step #" << n << 
" (out of " << nTimeStepSizes - 1
 
  179         << 
"), dt = " << dt << 
"\n";
 
  180     pl->
sublist(
"Default Integrator")
 
  182         .
set(
"Initial Time Step", dt);
 
  183     integrator = Tempus::createIntegratorBasic<double>(pl, model);
 
  186     bool integratorStatus = integrator->advanceTime();
 
  190     time             = integrator->getTime();
 
  191     double timeFinal = pl->sublist(
"Default Integrator")
 
  192                            .sublist(
"Time Step Control")
 
  193                            .
get<
double>(
"Final Time");
 
  197     if (n == nTimeStepSizes - 1) {
 
  199           integrator->getSolutionHistory();
 
  200       writeSolution(
"Tempus_Leapfrog_SinCos.dat", solutionHistory);
 
  203       for (
int i = 0; i < solutionHistory->getNumStates(); i++) {
 
  204         double time_i = (*solutionHistory)[i]->getTime();
 
  207                 model->getExactSolution(time_i).get_x()),
 
  209                 model->getExactSolution(time_i).get_x_dot()));
 
  210         state->setTime((*solutionHistory)[i]->getTime());
 
  211         solnHistExact->addState(state);
 
  213       writeSolution(
"Tempus_Leapfrog_SinCos-Ref.dat", solnHistExact);
 
  218     StepSize.push_back(dt);
 
  219     auto solution = Thyra::createMember(model->get_x_space());
 
  220     Thyra::copy(*(integrator->getX()), solution.ptr());
 
  221     solutions.push_back(solution);
 
  222     auto solutionDot = Thyra::createMember(model->get_x_space());
 
  223     Thyra::copy(*(integrator->getXDot()), solutionDot.ptr());
 
  224     solutionsDot.push_back(solutionDot);
 
  225     if (n == nTimeStepSizes - 1) {  
 
  226       StepSize.push_back(0.0);
 
  227       auto solutionExact = Thyra::createMember(model->get_x_space());
 
  228       Thyra::copy(*(model->getExactSolution(time).get_x()),
 
  229                   solutionExact.ptr());
 
  230       solutions.push_back(solutionExact);
 
  231       auto solutionDotExact = Thyra::createMember(model->get_x_space());
 
  232       Thyra::copy(*(model->getExactSolution(time).get_x_dot()),
 
  233                   solutionDotExact.ptr());
 
  234       solutionsDot.push_back(solutionDotExact);
 
  240   double xDotSlope                     = 0.0;
 
  242   double order                         = stepper->getOrder();
 
  244                   solutions, xErrorNorm, xSlope, solutionsDot, xDotErrorNorm,
 
Teuchos::RCP< SolutionState< Scalar > > createSolutionStateX(const Teuchos::RCP< Thyra::VectorBase< Scalar > > &x, const Teuchos::RCP< Thyra::VectorBase< Scalar > > &xdot=Teuchos::null, const Teuchos::RCP< Thyra::VectorBase< Scalar > > &xdotdot=Teuchos::null)
Nonmember constructor from non-const solution vectors, x. 
 
T & get(const std::string &name, T def_value)
 
void writeOrderError(const std::string filename, Teuchos::RCP< Tempus::Stepper< Scalar >> stepper, std::vector< Scalar > &StepSize, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar >>> &solutions, std::vector< Scalar > &xErrorNorm, Scalar &xSlope, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar >>> &solutionsDot, std::vector< Scalar > &xDotErrorNorm, Scalar &xDotSlope, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar >>> &solutionsDotDot, std::vector< Scalar > &xDotDotErrorNorm, Scalar &xDotDotSlope, Teuchos::FancyOStream &out)
 
#define TEST_FLOATING_EQUALITY(v1, v2, tol)
 
void writeSolution(const std::string filename, Teuchos::RCP< const Tempus::SolutionHistory< Scalar >> solutionHistory)
 
ParameterList & set(std::string const &name, T &&value, std::string const &docString="", RCP< const ParameterEntryValidator > const &validator=null)
 
Consider the ODE:  where  is a constant,  is a constant damping parameter,  is a constant forcing par...
 
TEUCHOS_UNIT_TEST(BackwardEuler, SinCos_ASA)
 
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
 
static void summarize(Ptr< const Comm< int > > comm, std::ostream &out=std::cout, const bool alwaysWriteLocal=false, const bool writeGlobalStats=true, const bool writeZeroTimers=true, const ECounterSetOp setOp=Intersection, const std::string &filter="", const bool ignoreZeroTimers=false)
 
TimeStepControl manages the time step size. There several mechanisms that effect the time step size a...
 
SolutionHistory is basically a container of SolutionStates. SolutionHistory maintains a collection of...
 
Keep a fix number of states. 
 
ParameterList & sublist(const std::string &name, bool mustAlreadyExist=false, const std::string &docString="")
 
Solution state for integrators and steppers.