13 #include "Teuchos_DefaultComm.hpp"
15 #include "Tempus_config.hpp"
16 #include "Tempus_IntegratorBasic.hpp"
17 #include "Tempus_IntegratorAdjointSensitivity.hpp"
19 #include "Thyra_VectorStdOps.hpp"
20 #include "Thyra_MultiVectorStdOps.hpp"
22 #include "../TestModels/SinCosModel.hpp"
23 #include "../TestUtils/Tempus_ConvergenceTestUtils.hpp"
25 #include "Thyra_DefaultMultiVectorProductVector.hpp"
32 namespace Tempus_Test {
34 using Teuchos::getParametersFromXmlFile;
37 using Teuchos::sublist;
47 std::vector<double> StepSize;
48 std::vector<double> ErrorNorm;
49 const int nTimeStepSizes = 7;
54 for (
int n = 0; n < nTimeStepSizes; n++) {
57 getParametersFromXmlFile(
"Tempus_BackwardEuler_SinCos_ASA.xml");
72 sens_pl.
set(
"Mass Matrix Is Identity",
false);
76 interp_pl.
set(
"Interpolator Type",
"Lagrange");
77 interp_pl.
set(
"Order", 0);
80 pl->
sublist(
"Default Stepper").
set(
"Use FSAL",
false);
85 .
set(
"Initial Condition Consistency Check",
false);
88 pl->
sublist(
"Default Integrator")
90 .
set(
"Initial Time Step", dt);
92 Tempus::createIntegratorAdjointSensitivity<double>(pl, model,
94 order = integrator->getStepper()->getOrder();
97 double t0 = pl->sublist(
"Default Integrator")
98 .sublist(
"Time Step Control")
99 .
get<
double>(
"Initial Time");
101 model->getExactSolution(t0).get_x();
102 const int num_param = model->get_p_space(0)->dim();
104 Thyra::createMembers(model->get_x_space(), num_param);
105 for (
int i = 0; i < num_param; ++i)
106 Thyra::assign(DxDp0->col(i).
ptr(),
107 *(model->getExactSensSolution(i, t0).get_x()));
108 integrator->initializeSolutionHistory(t0, x0, Teuchos::null, Teuchos::null,
109 DxDp0, Teuchos::null, Teuchos::null);
112 bool integratorStatus = integrator->advanceTime();
116 double time = integrator->getTime();
117 double timeFinal = pl->sublist(
"Default Integrator")
118 .sublist(
"Time Step Control")
119 .
get<
double>(
"Final Time");
128 Thyra::createMembers(model->get_x_space(), num_param);
132 const int num_g = DgDp->domain()->dim();
133 for (
int i = 0; i < num_g; ++i)
134 for (
int j = 0; j < num_param; ++j) dxdp_view(i, j) = dgdp_view(j, i);
137 model->getExactSolution(time).get_x();
139 Thyra::createMembers(model->get_x_space(), num_param);
140 for (
int i = 0; i < num_param; ++i)
141 Thyra::assign(DxDp_exact->col(i).
ptr(),
142 *(model->getExactSensSolution(i, time).get_x()));
145 if (comm->getRank() == 0 && n == nTimeStepSizes - 1) {
149 std::ofstream ftmp(
"Tempus_BackwardEuler_SinCos_AdjSens.dat");
151 integrator->getSolutionHistory();
152 for (
int i = 0; i < solutionHistory->getNumStates(); i++) {
154 const double time_i = solutionState->getTime();
156 Teuchos::rcp_dynamic_cast<
const DPV>(solutionState->getX());
158 x_prod_plot->getVectorBlock(0);
160 Teuchos::rcp_dynamic_cast<
const DMVPV>(
161 x_prod_plot->getVectorBlock(1));
163 adjoint_prod_plot->getMultiVector();
165 model->getExactSolution(time_i).get_x();
166 ftmp << std::fixed << std::setprecision(7) << time_i << std::setw(11)
167 << get_ele(*(x_plot), 0) << std::setw(11) << get_ele(*(x_plot), 1)
168 << std::setw(11) << get_ele(*(adjoint_plot->col(0)), 0)
169 << std::setw(11) << get_ele(*(adjoint_plot->col(0)), 1)
170 << std::setw(11) << get_ele(*(adjoint_plot->col(1)), 0)
171 << std::setw(11) << get_ele(*(adjoint_plot->col(1)), 1)
172 << std::setw(11) << get_ele(*(x_exact_plot), 0) << std::setw(11)
173 << get_ele(*(x_exact_plot), 1) << std::endl;
181 Thyra::V_StVpStV(xdiff.
ptr(), 1.0, *x_exact, -1.0, *(x));
182 Thyra::V_VmV(DxDpdiff.
ptr(), *DxDp_exact, *DxDp);
183 StepSize.push_back(dt);
184 double L2norm = Thyra::norm_2(*xdiff);
187 Thyra::norms_2(*DxDpdiff, L2norm_DxDp());
188 for (
int i = 0; i < num_param; ++i)
189 L2norm += L2norm_DxDp[i] * L2norm_DxDp[i];
190 L2norm = std::sqrt(L2norm);
191 ErrorNorm.push_back(L2norm);
198 double slope = computeLinearRegressionLogLog<double>(StepSize, ErrorNorm);
199 out <<
" Stepper = BackwardEuler" << std::endl;
200 out <<
" =========================" << std::endl;
201 out <<
" Expected order: " << order << std::endl;
202 out <<
" Observed order: " << slope << std::endl;
203 out <<
" =========================" << std::endl;
207 if (comm->getRank() == 0) {
208 std::ofstream ftmp(
"Tempus_BackwardEuler_SinCos_AdjSens-Error.dat");
209 double error0 = 0.8 * ErrorNorm[0];
210 for (
int n = 0; n < nTimeStepSizes; n++) {
211 ftmp << StepSize[n] <<
" " << ErrorNorm[n] <<
" "
212 << error0 * (StepSize[n] / StepSize[0]) << std::endl;
#define TEST_FLOATING_EQUALITY(v1, v2, tol)
Sine-Cosine model problem from Rythmos. This is a canonical Sine-Cosine differential equation with a...
ParameterList & set(std::string const &name, T &&value, std::string const &docString="", RCP< const ParameterEntryValidator > const &validator=null)
static Teuchos::RCP< const Comm< OrdinalType > > getComm()
TEUCHOS_UNIT_TEST(BackwardEuler, SinCos_ASA)
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
SolutionHistory is basically a container of SolutionStates. SolutionHistory maintains a collection of...
ParameterList & sublist(const std::string &name, bool mustAlreadyExist=false, const std::string &docString="")
Solution state for integrators and steppers.