Teko  Version of the Day
 All Classes Files Functions Variables Pages
Public Member Functions | List of all members
Teko::MultPrecsLinearOp Class Reference

#include <Teko_MultPreconditionerFactory.hpp>

Inheritance diagram for Teko::MultPrecsLinearOp:
Inheritance graph
[legend]

Public Member Functions

 MultPrecsLinearOp (const Teko::LinearOp &A, const Teko::LinearOp &M1, const Teko::LinearOp &M2)
 Constructor. More...
 
virtual Teko::VectorSpace range () const
 Range space of this operator. More...
 
virtual Teko::VectorSpace domain () const
 Domain space of this operator. More...
 
virtual void implicitApply (const Teko::BlockedMultiVector &r, Teko::BlockedMultiVector &y, const double alpha=1.0, const double beta=0.0) const
 Perform a matrix vector multiply with this implicitly defined blocked operator. More...
 
- Public Member Functions inherited from Teko::BlockImplicitLinearOp
virtual void implicitApply (const Thyra::EOpTransp M_trans, const BlockedMultiVector &x, BlockedMultiVector &y, const double alpha=1.0, const double beta=0.0) const
 Perform a matrix vector multiply with this implicitly defined blocked operator. More...
 

Additional Inherited Members

- Protected Member Functions inherited from Teko::BlockImplicitLinearOp
virtual bool opSupportedImpl (const Thyra::EOpTransp M_trans) const
 Functions required by Thyra::LinearOpBase. More...
 

Detailed Description

Declaration of a Teko::BlockImplicitLinearOp. BlockImplicitLinearOp's are useful when there is no simple or cheap matrix representation of something like f(r). This particular class corresponds to f(r) = (M2 + M1 - M2 * A * M1) r

which is an application of a multiplicative preconditioner. Notice that when M1 = inv(A) or when M2 = inv(A), we get f(r) = inv(A)*r.

While the above matrix represenation could be used instead of writing an implicit function, it requires an additional matrix-vector product than an efficient implementation. It should be noted (see comments below) that there is an efficient matrix represenation of this f(r). Namely,

        f(r) =  [M2 I] [I  -A] [ I]
                       [0   I] [ M1]

so we didn't really need to create an implicit operator.

Definition at line 54 of file Teko_MultPreconditionerFactory.hpp.

Constructor & Destructor Documentation

Teko::MultPrecsLinearOp::MultPrecsLinearOp ( const Teko::LinearOp &  A,
const Teko::LinearOp &  M1,
const Teko::LinearOp &  M2 
)
inline

Constructor.

Definition at line 57 of file Teko_MultPreconditionerFactory.hpp.

Member Function Documentation

virtual Teko::VectorSpace Teko::MultPrecsLinearOp::range ( ) const
inlinevirtual

Range space of this operator.

Implements Teko::BlockImplicitLinearOp.

Definition at line 60 of file Teko_MultPreconditionerFactory.hpp.

virtual Teko::VectorSpace Teko::MultPrecsLinearOp::domain ( ) const
inlinevirtual

Domain space of this operator.

Implements Teko::BlockImplicitLinearOp.

Definition at line 61 of file Teko_MultPreconditionerFactory.hpp.

void Teko::MultPrecsLinearOp::implicitApply ( const Teko::BlockedMultiVector &  x,
Teko::BlockedMultiVector &  y,
const double  alpha = 1.0,
const double  beta = 0.0 
) const
virtual

Perform a matrix vector multiply with this implicitly defined blocked operator.

The apply function takes one vector as input and applies a linear operator. The result is returned in $y$. If this operator is reprsented as $M$ then $ y = \alpha M x + \beta y $

Parameters
[in]x
[in,out]y
[in]alpha(default=1)
[in]beta(default=0)

Implements Teko::BlockImplicitLinearOp.

Definition at line 16 of file Teko_MultPreconditionerFactory.cpp.


The documentation for this class was generated from the following files: