Stokhos  Development
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Public Member Functions | List of all members
Stokhos::DerivBasis< ordinal_type, value_type > Class Template Referenceabstract

Abstract base class for multivariate orthogonal polynomials that support computing double and triple products involving derivatives of the basis polynomials. More...

#include <Stokhos_DerivBasis.hpp>

Inheritance diagram for Stokhos::DerivBasis< ordinal_type, value_type >:
Inheritance graph
[legend]
Collaboration diagram for Stokhos::DerivBasis< ordinal_type, value_type >:
Collaboration graph
[legend]

Public Member Functions

 DerivBasis ()
 Constructor.
 
virtual ~DerivBasis ()
 Destructor.
 
virtual Teuchos::RCP
< Stokhos::Dense3Tensor
< ordinal_type, value_type > > 
computeDerivTripleProductTensor (const Teuchos::RCP< const Teuchos::SerialDenseMatrix< ordinal_type, value_type > > &Bij, const Teuchos::RCP< const Stokhos::Sparse3Tensor< ordinal_type, value_type > > &Cijk) const =0
 Compute triple product tensor $D_{ijk} = \langle\Psi_i\Psi_j D_v\Psi_k\rangle$ where $D_v\Psi_k$ represents the derivative of $\Psi_k$ in the direction $v$. More...
 
virtual Teuchos::RCP
< Teuchos::SerialDenseMatrix
< ordinal_type, value_type > > 
computeDerivDoubleProductTensor () const =0
 Compute double product tensor $B_{ij} = \langle \Psi_i D_v\Psi_j\rangle$ where $D_v\Psi_j$ represents the derivative of $\Psi_j$ in the direction $v$. More...
 
- Public Member Functions inherited from Stokhos::OrthogPolyBasis< ordinal_type, value_type >
 OrthogPolyBasis ()
 Constructor.
 
virtual ~OrthogPolyBasis ()
 Destructor.
 
virtual ordinal_type order () const =0
 Return order of basis.
 
virtual ordinal_type dimension () const =0
 Return dimension of basis.
 
virtual ordinal_type size () const =0
 Return total size of basis.
 
virtual const Teuchos::Array
< value_type > & 
norm_squared () const =0
 Return array storing norm-squared of each basis polynomial. More...
 
virtual const value_type & norm_squared (ordinal_type i) const =0
 Return norm squared of basis polynomial i.
 
virtual Teuchos::RCP
< Stokhos::Sparse3Tensor
< ordinal_type, value_type > > 
computeTripleProductTensor () const =0
 Compute triple product tensor. More...
 
virtual Teuchos::RCP
< Stokhos::Sparse3Tensor
< ordinal_type, value_type > > 
computeLinearTripleProductTensor () const =0
 Compute linear triple product tensor where k = 0,1.
 
virtual value_type evaluateZero (ordinal_type i) const =0
 Evaluate basis polynomial i at zero.
 
virtual void evaluateBases (const Teuchos::ArrayView< const value_type > &point, Teuchos::Array< value_type > &basis_vals) const =0
 Evaluate basis polynomials at given point point. More...
 
virtual void print (std::ostream &os) const =0
 Print basis to stream os.
 
virtual const std::string & getName () const =0
 Return string name of basis.
 

Detailed Description

template<typename ordinal_type, typename value_type>
class Stokhos::DerivBasis< ordinal_type, value_type >

Abstract base class for multivariate orthogonal polynomials that support computing double and triple products involving derivatives of the basis polynomials.

Member Function Documentation

template<typename ordinal_type , typename value_type >
virtual Teuchos::RCP< Teuchos::SerialDenseMatrix<ordinal_type, value_type> > Stokhos::DerivBasis< ordinal_type, value_type >::computeDerivDoubleProductTensor ( ) const
pure virtual

Compute double product tensor $B_{ij} = \langle \Psi_i D_v\Psi_j\rangle$ where $D_v\Psi_j$ represents the derivative of $\Psi_j$ in the direction $v$.

The definition of $v$ is defined by the derived class implementation.

Implemented in Stokhos::CompletePolynomialBasis< ordinal_type, value_type >.

template<typename ordinal_type , typename value_type >
virtual Teuchos::RCP< Stokhos::Dense3Tensor<ordinal_type, value_type> > Stokhos::DerivBasis< ordinal_type, value_type >::computeDerivTripleProductTensor ( const Teuchos::RCP< const Teuchos::SerialDenseMatrix< ordinal_type, value_type > > &  Bij,
const Teuchos::RCP< const Stokhos::Sparse3Tensor< ordinal_type, value_type > > &  Cijk 
) const
pure virtual

Compute triple product tensor $D_{ijk} = \langle\Psi_i\Psi_j D_v\Psi_k\rangle$ where $D_v\Psi_k$ represents the derivative of $\Psi_k$ in the direction $v$.

The definition of $v$ is defined by the derived class implementation.

Implemented in Stokhos::CompletePolynomialBasis< ordinal_type, value_type >.


The documentation for this class was generated from the following file: