15 Real
random(
const ROL::Ptr<
const Teuchos::Comm<int> > &comm) {
17 if ( Teuchos::rank<int>(*comm)==0 ) {
18 val = (Real)rand()/(Real)RAND_MAX;
20 Teuchos::broadcast<int,Real>(*comm,0,1,&val);
24 int main(
int argc,
char* argv[]) {
26 Teuchos::GlobalMPISession mpiSession(&argc, &argv);
27 ROL::Ptr<const Teuchos::Comm<int> > comm
28 = ROL::toPtr(Teuchos::DefaultComm<int>::getComm());
31 int iprint = argc - 1;
32 ROL::Ptr<std::ostream> outStream;
34 if (iprint > 0 && Teuchos::rank<int>(*comm)==0)
35 outStream = ROL::makePtrFromRef(std::cout);
37 outStream = ROL::makePtrFromRef(bhs);
46 std::string filename =
"input.xml";
47 auto parlist = ROL::getParametersFromXmlFile( filename );
49 parlist->sublist(
"Status Test").set(
"Gradient Tolerance",1.e-7);
50 parlist->sublist(
"Status Test").set(
"Step Tolerance",1.e-14);
51 parlist->sublist(
"Status Test").set(
"Iteration Limit",100);
58 ROL::Ptr<std::vector<RealT> > z_ptr = ROL::makePtr<std::vector<RealT>>(nx+2,0);
59 ROL::Ptr<ROL::Vector<RealT> > zp = ROL::makePtr<ROL::StdVector<RealT>>(z_ptr);
60 ROL::Ptr<std::vector<RealT> > x1_ptr = ROL::makePtr<std::vector<RealT>>(nx+2,0);
61 ROL::Ptr<ROL::Vector<RealT> > x1p = ROL::makePtr<ROL::StdVector<RealT>>(x1_ptr);
62 ROL::Ptr<std::vector<RealT> > x2_ptr = ROL::makePtr<std::vector<RealT>>(nx+2,0);
63 ROL::Ptr<ROL::Vector<RealT> > x2p = ROL::makePtr<ROL::StdVector<RealT>>(x2_ptr);
64 ROL::Ptr<std::vector<RealT> > x3_ptr = ROL::makePtr<std::vector<RealT>>(nx+2,0);
65 ROL::Ptr<ROL::Vector<RealT> > x3p = ROL::makePtr<ROL::StdVector<RealT>>(x3_ptr);
66 std::vector<ROL::Ptr<ROL::Vector<RealT> > > xvec = {x1p, x2p, x3p};
68 ROL::Ptr<std::vector<RealT> > xr_ptr = ROL::makePtr<std::vector<RealT>>(nx+2,0);
70 ROL::Ptr<std::vector<RealT> > d_ptr = ROL::makePtr<std::vector<RealT>>(nx+2,0);
72 for (
int i = 0; i < nx+2; i++ ) {
73 (*xr_ptr)[i] = random<RealT>(comm);
74 (*d_ptr)[i] = random<RealT>(comm);
77 ROL::Ptr<std::vector<RealT> > u_ptr = ROL::makePtr<std::vector<RealT>>(nx,1);
78 ROL::Ptr<ROL::Vector<RealT> > up = ROL::makePtr<ROL::StdVector<RealT>>(u_ptr);
79 ROL::Ptr<std::vector<RealT> > p_ptr = ROL::makePtr<std::vector<RealT>>(nx,0);
80 ROL::Ptr<ROL::Vector<RealT> > pp = ROL::makePtr<ROL::StdVector<RealT>>(p_ptr);
85 int dim = 4, nSamp = 100;
86 std::vector<RealT> tmp = {-1, 1};
87 std::vector<std::vector<RealT> > bounds(dim,tmp);
88 ROL::Ptr<ROL::BatchManager<RealT> > bman
89 = ROL::makePtr<ROL::StdTeuchosBatchManager<RealT,int>>(comm);
90 ROL::Ptr<ROL::SampleGenerator<RealT> > sampler
91 = ROL::makePtr<ROL::MonteCarloGenerator<RealT>>(nSamp,bounds,bman,
false,
false,100);
97 ROL::Ptr<ROL::Objective_SimOpt<RealT> > pobjSimOpt
98 = ROL::makePtr<Objective_BurgersControl<RealT>>(alpha,nx);
99 ROL::Ptr<ROL::Constraint_SimOpt<RealT> > pconSimOpt
100 = ROL::makePtr<Constraint_BurgersControl<RealT>>(nx);
101 pconSimOpt->setSolveParameters(*parlist);
102 ROL::Ptr<ROL::Objective<RealT> > pObj
103 = ROL::makePtr<ROL::Reduced_Objective_SimOpt<RealT>>(pobjSimOpt,pconSimOpt,up,zp,pp);
105 *outStream <<
"Check Derivatives of Parametrized Objective Function\n";
107 pObj->setParameter(sampler->getMyPoint(0));
108 pObj->checkGradient(*xvec[0],d,
true,*outStream);
109 pObj->checkHessVec(*xvec[0],d,
true,*outStream);
113 const RealT cl(0.9), cc(1), lb(-0.5), ub(0.5);
114 const std::string ra =
"Risk Averse", rm =
"CVaR", dist =
"Parabolic";
115 const bool storage =
true;
117 std::vector<RealT> stat(3,0);
118 ROL::Ptr<ROL::OptimizationProblem<RealT>> optProb;
119 ROL::Ptr<ROL::OptimizationSolver<RealT>> solver;
120 for (
int i = 0; i < 3; ++i) {
121 *outStream <<
"\nSOLVE SMOOTHED CONDITIONAL VALUE AT RISK WITH TRUST REGION\n";
123 ROL::ParameterList list;
124 list.sublist(
"SOL").set(
"Type",ra);
125 list.sublist(
"SOL").set(
"Store Sampled Value and Gradient",storage);
126 list.sublist(
"SOL").sublist(
"Risk Measure").set(
"Name",rm);
127 list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).set(
"Confidence Level",cl);
128 list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).set(
"Convex Combination Parameter",cc);
129 list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).set(
"Smoothing Parameter",eps);
130 list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).sublist(
"Distribution").set(
"Name",dist);
131 list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).sublist(
"Distribution").sublist(dist).set(
"Lower Bound",lb);
132 list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).sublist(
"Distribution").sublist(dist).set(
"Upper Bound",ub);
134 if ( i==0 ) { xvec[i]->zero(); }
135 else { xvec[i]->set(*xvec[i-1]); }
136 optProb = ROL::makePtr<ROL::OptimizationProblem<RealT>>(pObj,xvec[i]);
138 if ( i > 0 ) { init_stat = stat[i-1]; }
139 list.sublist(
"SOL").set(
"Initial Statistic",init_stat);
140 optProb->setStochasticObjective(list,sampler);
141 optProb->check(*outStream);
143 parlist->sublist(
"Step").set(
"Type",
"Trust Region");
144 solver = ROL::makePtr<ROL::OptimizationSolver<RealT>>(*optProb,*parlist);
145 clock_t start = clock();
146 solver->solve(*outStream);
147 *outStream <<
"Optimization time: " << (
RealT)(clock()-start)/(
RealT)CLOCKS_PER_SEC <<
" seconds.\n";
149 stat[i] = optProb->getSolutionStatistic();
151 eps *=
static_cast<RealT>(1.e-2);
156 *outStream <<
"\nSOLVE NONSMOOTH CVAR PROBLEM WITH BUNDLE TRUST REGION\n";
157 ROL::ParameterList list;
158 list.sublist(
"SOL").set(
"Type",ra);
159 list.sublist(
"SOL").set(
"Store Sampled Value and Gradient",storage);
160 list.sublist(
"SOL").sublist(
"Risk Measure").set(
"Name",rm);
161 list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).set(
"Confidence Level",cl);
162 list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).set(
"Convex Combination Parameter",cc);
163 list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).set(
"Smoothing Parameter",0.);
164 list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).sublist(
"Distribution").set(
"Name",
"Dirac");
165 list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).sublist(
"Distribution").sublist(
"Dirac").set(
"Location",0.);
168 optProb = ROL::makePtr<ROL::OptimizationProblem<RealT>>(pObj,zp);
169 list.sublist(
"SOL").set(
"Initial Statistic",stat[2]);
170 optProb->setStochasticObjective(list,sampler);
171 optProb->check(*outStream);
173 parlist->sublist(
"Status Test").set(
"Iteration Limit",1000);
174 parlist->sublist(
"Step").sublist(
"Bundle").set(
"Epsilon Solution Tolerance",1.e-7);
175 parlist->sublist(
"Step").set(
"Type",
"Bundle");
176 solver = ROL::makePtr<ROL::OptimizationSolver<RealT>>(*optProb,*parlist);
177 clock_t start = clock();
178 solver->solve(*outStream);
179 *outStream <<
"Optimization time: " << (
RealT)(clock()-start)/(
RealT)CLOCKS_PER_SEC <<
" seconds.\n";
183 ROL::Ptr<ROL::Vector<RealT> > cErr = zp->clone();
184 RealT zstat = optProb->getSolutionStatistic();
185 *outStream <<
"\nSUMMARY:\n";
186 *outStream <<
" ---------------------------------------------\n";
187 *outStream <<
" True Value-At-Risk = " << zstat <<
"\n";
188 *outStream <<
" ---------------------------------------------\n";
189 RealT VARerror = std::abs(zstat-stat[0]);
190 cErr->set(*xvec[0]); cErr->axpy(-1.0,*zp);
191 RealT CTRLerror = cErr->norm();
192 RealT TOTerror1 = std::sqrt(std::pow(VARerror,2)+std::pow(CTRLerror,2));
193 *outStream <<
" Value-At-Risk (1.e-2) = " << stat[0] <<
"\n";
194 *outStream <<
" Value-At-Risk Error = " << VARerror <<
"\n";
195 *outStream <<
" Control Error = " << CTRLerror <<
"\n";
196 *outStream <<
" Total Error = " << TOTerror1 <<
"\n";
197 *outStream <<
" ---------------------------------------------\n";
198 VARerror = std::abs(zstat-stat[1]);
199 cErr->set(*xvec[1]); cErr->axpy(-1.0,*zp);
200 CTRLerror = cErr->norm();
201 RealT TOTerror2 = std::sqrt(std::pow(VARerror,2)+std::pow(CTRLerror,2));
202 *outStream <<
" Value-At-Risk (1.e-4) = " << stat[1] <<
"\n";
203 *outStream <<
" Value-At-Risk Error = " << VARerror <<
"\n";
204 *outStream <<
" Control Error = " << CTRLerror <<
"\n";
205 *outStream <<
" Total Error = " << TOTerror2 <<
"\n";
206 *outStream <<
" ---------------------------------------------\n";
207 VARerror = std::abs(zstat-stat[2]);
208 cErr->set(*xvec[2]); cErr->axpy(-1.0,*zp);
209 CTRLerror = cErr->norm();
210 RealT TOTerror3 = std::sqrt(std::pow(VARerror,2)+std::pow(CTRLerror,2));
211 *outStream <<
" Value-At-Risk (1.e-6) = " << stat[2] <<
"\n";
212 *outStream <<
" Value-At-Risk Error = " << VARerror <<
"\n";
213 *outStream <<
" Control Error = " << CTRLerror <<
"\n";
214 *outStream <<
" Total Error = " << TOTerror3 <<
"\n";
215 *outStream <<
" ---------------------------------------------\n\n";
217 errorFlag += ((TOTerror1 < 90.*TOTerror2) && (TOTerror2 < 90.*TOTerror3)) ? 1 : 0;
220 std::ofstream control;
221 control.open(
"example04_control.txt");
222 for (
int n = 0; n < nx+2; n++) {
223 control << std::scientific << std::setprecision(15)
224 << std::setw(25) <<
static_cast<RealT>(n)/static_cast<RealT>(nx+1)
225 << std::setw(25) << (*z_ptr)[n]
231 catch (std::logic_error& err) {
232 *outStream << err.what() <<
"\n";
237 std::cout <<
"End Result: TEST FAILED\n";
239 std::cout <<
"End Result: TEST PASSED\n";
Provides the ROL::Vector interface for scalar values, to be used, for example, with scalar constraint...
Real random(const ROL::Ptr< const Teuchos::Comm< int > > &comm)
basic_nullstream< char, char_traits< char >> nullstream
int main(int argc, char *argv[])