ROL
ROL_lDFP.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_LDFP_H
45 #define ROL_LDFP_H
46 
51 #include "ROL_Secant.hpp"
52 
53 namespace ROL {
54 
55 template<class Real>
56 class lDFP : public Secant<Real> {
57 private:
61 
62 public:
63  lDFP(int M, bool useDefaultScaling = true, Real Bscaling = Real(1))
64  : Secant<Real>(M,useDefaultScaling,Bscaling) {}
65 
66  // Apply lBFGS Approximate Inverse Hessian
67  void applyH( Vector<Real> &Hv, const Vector<Real> &v ) const {
68  const Real one(1);
69 
70  // Apply initial Hessian approximation to v
71  applyH0(Hv,v);
72 
73  std::vector<Ptr<Vector<Real>>> a(state_->current+1);
74  std::vector<Ptr<Vector<Real>>> b(state_->current+1);
75  Real bv(0), av(0), bs(0), as(0);
76  for (int i = 0; i <= state_->current; i++) {
77  b[i] = Hv.clone();
78  b[i]->set(*(state_->iterDiff[i]));
79  b[i]->scale(1.0/sqrt(state_->product[i]));
80  //bv = b[i]->dot(v.dual());
81  bv = b[i]->apply(v);
82  Hv.axpy(bv,*b[i]);
83 
84  a[i] = Hv.clone();
85  applyH0(*a[i],*(state_->gradDiff[i]));
86 
87  for (int j = 0; j < i; j++) {
88  //bs = b[j]->dot((state_->gradDiff[i])->dual());
89  bs = b[j]->apply(*(state_->gradDiff[i]));
90  a[i]->axpy(bs,*b[j]);
91  //as = a[j]->dot((state_->gradDiff[i])->dual());
92  as = a[j]->apply(*(state_->gradDiff[i]));
93  a[i]->axpy(-as,*a[j]);
94  }
95  //as = a[i]->dot((state_->gradDiff[i])->dual());
96  as = a[i]->apply(*(state_->gradDiff[i]));
97  a[i]->scale(one/sqrt(as));
98  //av = a[i]->dot(v.dual());
99  av = a[i]->apply(v);
100  Hv.axpy(-av,*a[i]);
101  }
102  }
103 
104  // Apply Initial Secant Approximate Hessian
105  virtual void applyH0( Vector<Real> &Hv, const Vector<Real> &v ) const {
106  Hv.set(v.dual());
107  if (useDefaultScaling_) {
108  if (state_->iter != 0 && state_->current != -1) {
109  Real ss = state_->iterDiff[state_->current]->dot(*(state_->iterDiff[state_->current]));
110  Hv.scale(state_->product[state_->current]/ss);
111  }
112  }
113  else {
114  Hv.scale(static_cast<Real>(1)/Bscaling_);
115  }
116  }
117 
118  // Apply lBFGS Approximate Hessian
119  void applyB( Vector<Real> &Bv, const Vector<Real> &v ) const {
120  const Real zero(0);
121 
122  Bv.set(v.dual());
123  std::vector<Real> alpha(state_->current+1,zero);
124  for (int i = state_->current; i>=0; i--) {
125  alpha[i] = state_->gradDiff[i]->dot(Bv);
126  alpha[i] /= state_->product[i];
127  Bv.axpy(-alpha[i],(state_->iterDiff[i])->dual());
128  }
129 
130  // Apply initial inverse Hessian approximation to v
131  Ptr<Vector<Real>> tmp = Bv.clone();
132  applyB0(*tmp,Bv.dual());
133  Bv.set(*tmp);
134 
135  Real beta(0);
136  for (int i = 0; i <= state_->current; i++) {
137  //beta = state_->iterDiff[i]->dot(Bv.dual());
138  beta = state_->iterDiff[i]->apply(Bv);
139  beta /= state_->product[i];
140  Bv.axpy((alpha[i]-beta),*(state_->gradDiff[i]));
141  }
142  }
143 
144  // Apply Initial Secant Approximate Hessian
145  virtual void applyB0( Vector<Real> &Bv, const Vector<Real> &v ) const {
146  Bv.set(v.dual());
147  if (useDefaultScaling_) {
148  if (state_->iter != 0 && state_->current != -1) {
149  Real ss = state_->iterDiff[state_->current]->dot(*(state_->iterDiff[state_->current]));
150  Bv.scale(ss/state_->product[state_->current]);
151  }
152  }
153  else {
154  Bv.scale(Bscaling_);
155  }
156  }
157 };
158 
159 }
160 
161 #endif
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
virtual void axpy(const Real alpha, const Vector &x)
Compute where .
Definition: ROL_Vector.hpp:153
Provides definitions for limited-memory DFP operators.
Definition: ROL_lDFP.hpp:56
virtual void applyH(Vector< Real > &Hv, const Vector< Real > &v) const =0
bool useDefaultScaling_
Definition: ROL_Secant.hpp:84
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
virtual void applyB0(Vector< Real > &Bv, const Vector< Real > &v) const
Definition: ROL_Secant.hpp:161
Provides interface for and implements limited-memory secant operators.
Definition: ROL_Secant.hpp:79
virtual void applyB(Vector< Real > &Bv, const Vector< Real > &v) const =0
const Ptr< SecantState< Real > > state_
Definition: ROL_Secant.hpp:82
virtual void applyH0(Vector< Real > &Hv, const Vector< Real > &v) const
Definition: ROL_Secant.hpp:144
Real Bscaling_
Definition: ROL_Secant.hpp:85
useDefaultScaling
Definition: ROL_lDFP.hpp:64