10 #ifndef ROL_TYPEP_TRUSTREGIONALGORITHM_DEF_HPP
11 #define ROL_TYPEP_TRUSTREGIONALGORITHM_DEF_HPP
19 template<
typename Real>
26 ParameterList &trlist = list.sublist(
"Step").sublist(
"Trust Region");
28 state_->searchSize = trlist.get(
"Initial Radius", -1.0);
29 delMax_ = trlist.get(
"Maximum Radius", ROL_INF<Real>());
30 eta0_ = trlist.get(
"Step Acceptance Threshold", 0.05);
31 eta1_ = trlist.get(
"Radius Shrinking Threshold", 0.05);
32 eta2_ = trlist.get(
"Radius Growing Threshold", 0.9);
33 gamma0_ = trlist.get(
"Radius Shrinking Rate (Negative rho)", 0.0625);
34 gamma1_ = trlist.get(
"Radius Shrinking Rate (Positive rho)", 0.25);
35 gamma2_ = trlist.get(
"Radius Growing Rate", 2.5);
36 TRsafe_ = trlist.get(
"Safeguard Size", 100.0);
37 eps_ = TRsafe_*ROL_EPSILON<Real>();
38 interpRad_ = trlist.get(
"Use Radius Interpolation",
false);
39 verbosity_ = trlist.sublist(
"General").get(
"Output Level", 0);
40 initProx_ = trlist.get(
"Apply Prox to Initial Guess",
false);
41 t0_ = list.sublist(
"Status Test").get(
"Proximal Gradient Parameter", 1.0);
43 storageNM_ = trlist.get(
"Nonmonotone Storage Size", 0);
44 useNM_ = (storageNM_ <= 0 ?
false :
true);
46 ROL::ParameterList &lmlist = trlist.sublist(
"TRN");
47 mu0_ = lmlist.get(
"Sufficient Decrease Parameter", 1e-2);
48 spexp_ = lmlist.get(
"Relative Tolerance Exponent", 1.0);
49 spexp_ = std::max(static_cast<Real>(1),std::min(spexp_,static_cast<Real>(2)));
50 redlim_ = lmlist.sublist(
"Cauchy Point").get(
"Maximum Number of Reduction Steps", 10);
51 explim_ = lmlist.sublist(
"Cauchy Point").get(
"Maximum Number of Expansion Steps", 10);
52 alpha_ = lmlist.sublist(
"Cauchy Point").get(
"Initial Step Size", 1.0);
53 normAlpha_ = lmlist.sublist(
"Cauchy Point").get(
"Normalize Initial Step Size",
false);
54 interpf_ = lmlist.sublist(
"Cauchy Point").get(
"Reduction Rate", 0.1);
55 extrapf_ = lmlist.sublist(
"Cauchy Point").get(
"Expansion Rate", 10.0);
56 qtol_ = lmlist.sublist(
"Cauchy Point").get(
"Decrease Tolerance", 1e-8);
58 lambdaMin_ = lmlist.sublist(
"Solver").get(
"Minimum Spectral Step Size", 1e-8);
59 lambdaMax_ = lmlist.sublist(
"Solver").get(
"Maximum Spectral Step Size", 1e8);
60 gamma_ = lmlist.sublist(
"Solver").get(
"Sufficient Decrease Tolerance", 1e-4);
61 maxSize_ = lmlist.sublist(
"Solver").get(
"Maximum Storage Size", 10);
62 maxit_ = lmlist.sublist(
"Solver").get(
"Iteration Limit", 25);
63 tol1_ = lmlist.sublist(
"Solver").get(
"Absolute Tolerance", 1e-4);
64 tol2_ = lmlist.sublist(
"Solver").get(
"Relative Tolerance", 1e-2);
66 useMin_ = lmlist.sublist(
"Solver").get(
"Use Smallest Model Iterate",
true);
67 useNMSP_ = lmlist.sublist(
"Solver").get(
"Use Nonmonotone Search",
false);
68 std::string ssname = lmlist.sublist(
"Solver").get(
"Subproblem Solver",
"SPG");
71 ncgType_ = lmlist.sublist(
"Solver").sublist(
"NCG").get(
"Nonlinear CG Type", 4);
72 etaNCG_ = lmlist.sublist(
"Solver").sublist(
"NCG").get(
"Truncation Parameter for HZ CG", 1e-2);
73 desPar_ = lmlist.sublist(
"Solver").sublist(
"NCG").get(
"Descent Parameter", 0.2);
75 ParameterList &glist = list.sublist(
"General");
77 useInexact_.push_back(glist.get(
"Inexact Objective Function",
false));
78 useInexact_.push_back(glist.get(
"Inexact Gradient",
false));
79 useInexact_.push_back(glist.get(
"Inexact Hessian-Times-A-Vector",
false));
81 ParameterList &ilist = trlist.sublist(
"Inexact").sublist(
"Gradient");
82 scale0_ = ilist.get(
"Tolerance Scaling", static_cast<Real>(0.1));
83 scale1_ = ilist.get(
"Relative Tolerance", static_cast<Real>(2));
85 ParameterList &vlist = trlist.sublist(
"Inexact").sublist(
"Value");
86 scale_ = vlist.get(
"Tolerance Scaling", static_cast<Real>(1.e-1));
87 omega_ = vlist.get(
"Exponent", static_cast<Real>(0.9));
88 force_ = vlist.get(
"Forcing Sequence Initial Value", static_cast<Real>(1.0));
89 updateIter_ = vlist.get(
"Forcing Sequence Update Frequency", static_cast<int>(10));
90 forceFactor_ = vlist.get(
"Forcing Sequence Reduction Factor", static_cast<Real>(0.1));
92 verbosity_ = list.sublist(
"General").get(
"Output Level",0);
93 writeHeader_ = verbosity_ > 2;
95 useSecantPrecond_ = list.sublist(
"General").sublist(
"Secant").get(
"Use as Preconditioner",
false);
96 useSecantHessVec_ = list.sublist(
"General").sublist(
"Secant").get(
"Use as Hessian",
false);
101 model_ = makePtr<TrustRegionModel_U<Real>>(list,secant,mode);
102 if (secant == nullPtr) {
103 std::string secantType = list.sublist(
"General").sublist(
"Secant").get(
"Type",
"Limited-Memory BFGS");
108 template<
typename Real>
116 std::ostream &outStream) {
122 nobj.
prox(*state_->iterateVec,x,t0_, ftol); state_->nprox++;
123 x.
set(*state_->iterateVec);
126 state_->svalue = sobj.
value(x,ftol); state_->nsval++;
128 state_->nvalue = nobj.
value(x,ftol); state_->nnval++;
129 state_->value = state_->svalue + state_->nvalue;
130 computeGradient(x,*state_->gradientVec,px,dg,*state_->stepVec,state_->searchSize,sobj,nobj,
true,gtol_,state_->gnorm,outStream);
132 state_->snorm = ROL_INF<Real>();
134 if (normAlpha_) alpha_ /= state_->gradientVec->norm();
136 if ( state_->searchSize <= static_cast<Real>(0) )
137 state_->searchSize = state_->gradientVec->norm();
142 template<
typename Real>
151 outTol = std::sqrt(ROL_EPSILON<Real>());
152 if ( useInexact_[0] ) {
153 if (!(iter%updateIter_) && (iter!=0)) force_ *= forceFactor_;
155 Real eta =
static_cast<Real
>(0.999)*std::min(eta1_,one-eta2_);
156 outTol = scale_*std::pow(eta*std::min(pRed,force_),one/omega_);
157 if (inTol > outTol) {
158 fold = sobj.
value(xold,outTol); state_->nsval++;
163 Real fval = sobj.
value(x,outTol); state_->nsval++;
167 template<
typename Real>
179 std::ostream &outStream)
const {
180 if ( useInexact_[1] ) {
181 Real gtol0 = scale0_*del;
182 if (accept) gtol = gtol0 +
static_cast<Real
>(1);
183 else gtol0 = scale0_*std::min(gnorm,del);
184 while ( gtol > gtol0 ) {
186 sobj.
gradient(g,x,gtol); state_->ngrad++;
188 pgstep(px, step, nobj, x, dg, t0_, gtol0);
189 gnorm = step.
norm() / t0_;
190 gtol0 = scale0_*std::min(gnorm,del);
195 gtol = std::sqrt(ROL_EPSILON<Real>());
196 sobj.
gradient(g,x,gtol); state_->ngrad++;
198 pgstep(px, step, nobj, x, dg, t0_, gtol);
199 gnorm = step.
norm() / t0_;
204 template<
typename Real>
209 std::ostream &outStream ) {
210 const Real
zero(0), one(1);
212 Real inTol =
static_cast<Real
>(0.1)*ROL_OVERFLOW<Real>(), outTol(inTol);
213 Real strial(0), ntrial(0), smodel(0), Ftrial(0), pRed(0), rho(1);
215 std::vector<std::string> output;
216 Ptr<Vector<Real>> gmod = g.
clone();
217 Ptr<Vector<Real>> px = x.
clone();
218 Ptr<Vector<Real>> dg = x.
clone();
220 initialize(x,g,inTol,sobj,nobj, *px, *dg, outStream);
222 Ptr<Vector<Real>> pwa1 = x.
clone(), pwa2 = x.
clone();
223 Ptr<Vector<Real>> pwa3 = x.
clone(), pwa4 = x.
clone();
224 Ptr<Vector<Real>> pwa5 = x.
clone(), pwa6 = x.
clone();
225 Ptr<Vector<Real>> pwa7 = x.
clone();
226 Ptr<Vector<Real>> dwa1 = g.
clone(), dwa2 = g.
clone();
228 Real rhoNM(0), sigmac(0), sigmar(0);
229 Real fr(state_->value), fc(state_->value), fmin(state_->value);
233 if (verbosity_ > 0) writeOutput(outStream,
true);
235 while (status_->check(*state_)) {
237 model_->setData(sobj,*state_->iterateVec,*state_->gradientVec,gtol_);
241 gmod->set(*state_->gradientVec);
242 smodel = state_->svalue;
243 ntrial = state_->nvalue;
244 switch (algSelect_) {
248 dcauchy(*state_->stepVec,alpha_, smodel, ntrial,
249 *state_->iterateVec, *dg, state_->searchSize,
250 *model_, nobj, *px, *dwa1, *dwa2, outStream);
251 x.
plus(*state_->stepVec);
256 dspg(x,smodel,ntrial,*gmod,*state_->iterateVec,state_->searchSize,
257 *model_,nobj,*pwa1,*pwa2,*pwa3,*pwa4,*pwa5,*pwa6,*pwa7,*dwa1,
259 pRed = state_->value - (smodel+ntrial);
262 dspg2(x,smodel, ntrial, pRed, *gmod, *state_->iterateVec,
263 state_->searchSize, *model_, nobj,
264 *pwa1, *pwa2, *px, *dwa1, outStream);
267 dncg(x,smodel,ntrial,*gmod,*state_->iterateVec,state_->searchSize,
268 *model_,nobj,*pwa1,*pwa2,*pwa3,*pwa4,*pwa5,*pwa6,*dwa1,
270 pRed = state_->value - (smodel+ntrial);
276 state_->stepVec->set(x); state_->stepVec->axpy(-one,*state_->iterateVec);
277 state_->snorm = state_->stepVec->norm();
280 strial = computeValue(inTol,outTol,pRed,state_->svalue,state_->iter,x,*state_->iterateVec,sobj);
281 Ftrial = strial + ntrial;
285 TRUtils::analyzeRatio<Real>(rho,TRflag_,state_->value,Ftrial,pRed,eps_,outStream,verbosity_>1);
287 TRUtils::analyzeRatio<Real>(rhoNM,TRflagNM,fr,Ftrial,pRed+sigmar,eps_,outStream,verbosity_>1);
288 TRflag_ = (rho < rhoNM ? TRflagNM : TRflag_);
289 rho = (rho < rhoNM ? rhoNM : rho );
296 x.
set(*state_->iterateVec);
301 state_->searchSize = TRUtils::interpolateRadius<Real>(*state_->gradientVec,*state_->stepVec,
302 state_->snorm,pRed,state_->value,Ftrial,state_->searchSize,gamma0_,gamma1_,eta2_,
303 outStream,verbosity_>1);
306 state_->searchSize = gamma1_*std::min(state_->snorm,state_->searchSize);
308 computeGradient(x,*state_->gradientVec,*px,*dg,*pwa1,state_->searchSize,sobj,nobj,
false,gtol_,state_->gnorm,outStream);
312 state_->value = Ftrial;
313 state_->svalue = strial;
314 state_->nvalue = ntrial;
319 sigmac += pRed; sigmar += pRed;
320 if (Ftrial < fmin) { fmin = Ftrial; fc = fmin; sigmac =
zero; L = 0; }
323 if (Ftrial > fc) { fc = Ftrial; sigmac =
zero; }
324 if (L == storageNM_) { fr = fc; sigmar = sigmac; }
328 if (rho >= eta2_) state_->searchSize = std::min(gamma2_*state_->searchSize, delMax_);
330 dwa1->set(*state_->gradientVec);
331 computeGradient(x,*state_->gradientVec,*px,*dg,*pwa1,state_->searchSize,sobj,nobj,
true,gtol_,state_->gnorm,outStream);
332 state_->iterateVec->set(x);
334 model_->update(x,*state_->stepVec,*dwa1,*state_->gradientVec,
335 state_->snorm,state_->iter);
339 if (verbosity_ > 0) writeOutput(outStream,writeHeader_);
344 template<
typename Real>
357 std::ostream &outStream) {
358 const Real half(0.5), sold(sval), nold(nval);
359 Real tol = std::sqrt(ROL_EPSILON<Real>());
361 Real gs(0), snorm(0), Qk(0), pRed(0);
363 pgstep(px, s, nobj, x, g, alpha, tol);
369 model.
hessVec(dwa,s,x,tol); nhess_++;
371 nval = nobj.
value(px, tol); state_->nnval++;
373 sval = sold + gs + half * s.
apply(dwa);
374 pRed = (sold + nold) - (sval + nval);
375 Qk = gs + nval - nold;
376 interp = (pRed < -mu0_*Qk);
384 pgstep(px, s, nobj, x, g, alpha, tol);
387 model.
hessVec(dwa,s,x,tol); nhess_++;
389 nval = nobj.
value(px, tol); state_->nnval++;
391 sval = sold + gs + half * s.
apply(dwa);
392 pRed = (sold + nold) - (sval + nval);
393 Qk = gs + nval - nold;
394 search = ((pRed < -mu0_*Qk) && (cnt < redlim_)) ;
407 pgstep(px, s, nobj, x, g, alpha, tol);
409 if (snorm <= del && cnt < explim_){
410 model.
hessVec(dwa,s,x,tol); nhess_++;
412 nval = nobj.
value(px, tol); state_->nnval++;
414 sval = sold + gs + half * s.
apply(dwa);
415 pRed = (sold + nold) - (sval + nval);
416 Qk = gs + nval - nold;
417 if (pRed >= -mu0_*Qk && std::abs(pRed-mvals) > qtol_*std::abs(mvals)) {
437 pgstep(px, s, nobj, x, g, alpha, tol);
440 if (verbosity_ > 1) {
441 outStream <<
" Cauchy point" << std::endl;
442 outStream <<
" Step length (alpha): " << alpha << std::endl;
443 outStream <<
" Step length (alpha*g): " << snorm << std::endl;
444 outStream <<
" Model decrease (pRed): " << pRed << std::endl;
446 outStream <<
" Number of extrapolation steps: " << cnt << std::endl;
451 template<
typename Real>
465 std::ostream &outStream) {
473 const Real half(0.5), one(1), safeguard(1e2*ROL_EPSILON<Real>());
474 const Real mprev(sval+nval);
475 Real tol(std::sqrt(ROL_EPSILON<Real>()));
476 Real coeff(1), alpha(1), alphaMax(1), lambda(1), lambdaTmp(1);
477 Real gs(0), ss(0), gnorm(0), s0s0(0), ss0(0), sHs(0), snorm(0), nold(nval);
484 coeff = one / gmod.
norm();
485 lambda = std::max(lambdaMin_,std::min(coeff,lambdaMax_));
486 pgstep(pwa2, pwa, nobj, y, gmod.
dual(), lambda, tol);
487 gs = gmod.
apply(pwa);
489 snorm = std::sqrt(ss);
490 gnorm = snorm / lambda;
493 const Real gtol = std::min(tol1_,tol2_*gnorm);
496 outStream <<
" Spectral Projected Gradient" << std::endl;
499 while (SPiter_ < maxit_) {
503 model.
hessVec(dwa,pwa,x,tol); nhess_++;
504 sHs = dwa.
apply(pwa);
508 nval = nobj.
value(pwa2,tol); state_->nnval++;
512 if (snorm >= del-safeguard) {
514 alphaMax = std::min(one, (-ss0 + std::sqrt(ss0*ss0 - ss*(s0s0-del*del)))/ss);
516 alpha = (sHs <= safeguard) ? alphaMax : std::min(alphaMax, -(gs + nval - nold)/sHs);
521 sval += gs + half * sHs;
527 nval = nobj.
value(y, tol); state_->nnval++;
528 sval += alpha * (gs + half * alpha * sHs);
529 gmod.
axpy(alpha,dwa);
532 pRed = mprev - (sval+nval);
535 pwa1.
set(y); pwa1.
axpy(-one,x);
536 s0s0 = pwa1.
dot(pwa1);
537 snorm = std::sqrt(s0s0);
539 if (verbosity_ > 1) {
540 outStream << std::endl;
541 outStream <<
" Iterate: " << SPiter_ << std::endl;
542 outStream <<
" Spectral step length (lambda): " << lambda << std::endl;
543 outStream <<
" Step length (alpha): " << alpha << std::endl;
544 outStream <<
" Model decrease (pRed): " << pRed << std::endl;
545 outStream <<
" Optimality criterion: " << gnorm << std::endl;
546 outStream <<
" Step norm: " << snorm << std::endl;
547 outStream << std::endl;
550 if (snorm >= del - safeguard) { SPflag_ = 2;
break; }
553 lambdaTmp = (sHs <= safeguard) ? one/gmod.
norm() : ss/sHs;
554 lambda = std::max(lambdaMin_,std::min(lambdaTmp,lambdaMax_));
556 pgstep(pwa2, pwa, nobj, y, gmod.
dual(), alpha, tol);
557 gs = gmod.
apply(pwa);
559 gnorm = std::sqrt(ss) / lambda;
561 if (gnorm <= gtol) { SPflag_ = 0;
break; }
563 SPflag_ = (SPiter_==maxit_) ? 1 : SPflag_;
566 template<
typename Real>
583 std::ostream &outStream) {
591 const Real half(0.5), one(1), safeguard(1e2*ROL_EPSILON<Real>());
592 const Real mval(sval+nval);
593 Real tol(std::sqrt(ROL_EPSILON<Real>()));
594 Real mcomp(0), mval_min(0), sval_min(0), nval_min(0);
595 Real alpha(1), coeff(1), lambda(1), lambdaTmp(1);
596 Real snew(sval), nnew(nval), mnew(mval);
597 Real sold(sval), nold(nval), mold(mval);
598 Real sHs(0), ss(0), gs(0), Qk(0), gnorm(0);
599 std::deque<Real> mqueue; mqueue.push_back(mold);
601 if (useNMSP_ && useMin_) {
602 mval_min = mval; sval_min = sval; nval_min = nval; ymin.
set(y);
607 pwa.
set(y); pwa.
axpy(-t0_,pwa1);
608 dprox(pwa,x,t0_,del,nobj,pwa2,pwa3,pwa4,pwa5,outStream);
610 gnorm = pwa.
norm() / t0_;
611 const Real gtol = std::min(tol1_,tol2_*gnorm);
614 coeff = one / gmod.
norm();
615 lambda = std::max(lambdaMin_,std::min(coeff,lambdaMax_));
618 outStream <<
" Spectral Projected Gradient" << std::endl;
621 while (SPiter_ < maxit_) {
626 pwa.
set(y); pwa.
axpy(-lambda,pwa1);
627 dprox(pwa,x,lambda,del,nobj,pwa2,pwa3,pwa4,pwa5,outStream);
633 model.
hessVec(dwa,pwa,x,tol); nhess_++;
635 nnew = nobj.
value(pwa2, tol); state_->nnval++;
636 sHs = dwa.
apply(pwa);
637 gs = gmod.
apply(pwa);
638 snew = half * sHs + gs + sold;
640 Qk = gs + nnew - nold;
654 mcomp = *std::max_element(mqueue.begin(),mqueue.end());
655 while( mnew > mcomp + mu0_*Qk ) {
657 pwa2.
set(y); pwa2.
axpy(alpha,pwa);
659 nnew = nobj.
value(pwa2, tol); state_->nnval++;
660 snew = half * alpha * alpha * sHs + alpha * gs + sold;
662 Qk = alpha * gs + nnew - nold;
666 alpha = (sHs <= safeguard) ? one : std::min(one,-(gs + nnew - nold)/sHs);
674 gmod.
axpy(alpha,dwa);
679 if (static_cast<int>(mqueue.size())==maxSize_) mqueue.pop_front();
680 mqueue.push_back(sval+nval);
681 if (useMin_ && mval <= mval_min) {
682 mval_min = mval; sval_min = sval; nval_min = nval; ymin.
set(y);
688 pwa.
set(y); pwa.
axpy(-t0_,pwa1);
689 dprox(pwa,x,t0_,del,nobj,pwa2,pwa3,pwa4,pwa5,outStream);
691 gnorm = pwa.
norm() / t0_;
693 if (verbosity_ > 1) {
694 outStream << std::endl;
695 outStream <<
" Iterate: " << SPiter_ << std::endl;
696 outStream <<
" Spectral step length (lambda): " << lambda << std::endl;
697 outStream <<
" Step length (alpha): " << alpha << std::endl;
698 outStream <<
" Model decrease (pRed): " << mval-mold << std::endl;
699 outStream <<
" Optimality criterion: " << gnorm << std::endl;
700 outStream << std::endl;
702 if (gnorm < gtol)
break;
705 lambdaTmp = (sHs == 0 ? coeff : ss / sHs);
706 lambda = std::max(lambdaMin_, std::min(lambdaTmp, lambdaMax_));
708 if (useNMSP_ && useMin_) {
709 sval = sval_min; nval = nval_min; y.
set(ymin);
712 sval = sold; nval = nold;
714 SPflag_ = (SPiter_==maxit_) ? 1 : 0;
717 template<
typename Real>
727 std::ostream &outStream)
const {
729 const Real
zero(0), half(0.5), one(1), two(2), three(3);
730 const Real eps(ROL_EPSILON<Real>()), tol0(1e1*eps), fudge(1.0-1e-2*sqrt(eps));
731 Real f0(0), f1(0), fc(0), t0(0), t1(1), tc(0), d1(1), d2(1), tol(1);
732 Real p(0), q(0), r(0), s(0), m(0);
733 int cnt(state_->nprox);
734 nobj.
prox(y1, x, t, tol); state_->nprox++;
735 pwa.
set(y1); pwa.
axpy(-one,x0);
742 tc = t0; fc = f0; yc.
set(y0);
746 if (std::abs(fc-del) < std::abs(f1-del)) {
747 t0 = t1; t1 = tc; tc = t0;
748 f0 = f1; f1 = fc; fc = f0;
751 tol = two*eps*std::abs(t1) + half*tol0;
753 if (std::abs(m) <= tol) { code = 1;
break; }
754 if ((f1 >= fudge*del && f1 <= del))
break;
755 if (std::abs(d1) < tol || std::abs(f0-del) <= std::abs(f1-del)) {
759 s = (f1-del)/(f0-del);
765 q = (f0-del)/(fc-del);
766 r = (f1-del)/(fc-del);
767 p = s*(two*m*q*(q-r)-(t1-t0)*(r-one));
768 q = (q-one)*(r-one)*(s-one);
770 if (p >
zero) q = -q;
774 if (two*p < three*m*q-std::abs(tol*q) && p < std::abs(half*s*q)) {
781 t0 = t1; f0 = f1; y0.
set(y1);
782 if (std::abs(d2) > tol) t1 += d2;
783 else if (m >
zero) t1 += tol;
786 nobj.
prox(y1, pwa, t1*t, tol); state_->nprox++;
787 pwa.
set(y1); pwa.
axpy(-one,x0);
789 if ((f1 > del && fc > del) || (f1 <= del && fc <= del)) {
790 tc = t0; fc = f0; yc.
set(y0);
794 if (code==1 && f1>del) x.
set(yc);
796 if (verbosity_ > 1) {
797 outStream << std::endl;
798 outStream <<
" Trust-Region Subproblem Proximity Operator" << std::endl;
799 outStream <<
" Number of proxes: " << state_->nprox-cnt << std::endl;
800 if (code == 1 && f1 > del) {
801 outStream <<
" Transformed Multiplier: " << tc << std::endl;
802 outStream <<
" Dual Residual: " << fc-del << std::endl;
805 outStream <<
" Transformed Multiplier: " << t1 << std::endl;
806 outStream <<
" Dual Residual: " << f1-del << std::endl;
808 outStream <<
" Exit Code: " << code << std::endl;
809 outStream << std::endl;
813 template<
typename Real>
817 Real lambda, Real tmax,
821 Real tol(std::sqrt(ROL_EPSILON<Real>()));
822 const Real eps(1e-2*std::sqrt(ROL_EPSILON<Real>())), tol0(1e4*tol);
823 const Real eps0(1e2*ROL_EPSILON<Real>());
824 const unsigned maxit(50);
825 const Real
zero(0), half(0.5), one(1), two(2);
826 const Real lam(0.5*(3.0-std::sqrt(5.0)));
827 const Real nold(nval);
836 Real nR = nobj.
value(pwa,tol); state_->nnval++;
837 Real pR = tR * (half * tR * kappa + gs) + nR - nold;
840 Real t0 = tR, n0 = nR;
845 n0 = nobj.
value(pwa,tol); state_->nnval++;
847 Real ts = (kappa > 0) ? std::min(tR,(((nold - n0) / kappa) / t0) - (gs / kappa)) : tR;
848 Real t = std::min(t0,ts);
851 t = (t0 < tR ? t0 : half*tR);
858 Real nt = nobj.
value(pwa,tol); state_->nnval++;
859 Real Qt = t * gs + nt - nold, Qu = Qt;
860 Real pt = half * t * t * kappa + Qt;
865 if (useOptT && nt == nold && nR == nold) {
867 pred = ts * (half * ts * kappa + gs);
874 if (pt >= std::max(pL, pR)) {
883 Real w = t, v = t, pw = pt, pv = pt, d(0), pu(0), nu(0);
884 Real u(0), p(0), q(0), r(0), etmp(0), e(0), dL(0), dR(0);
885 Real tm = half * (tL + tR);
886 Real tol1 = tol0 * std::abs(t)+eps;
887 Real tol2 = two * tol1;
889 for (
unsigned it = 0u; it < maxit; ++it) {
890 dL = tL-t; dR = tR-t;
891 if (std::abs(e) > tol1) {
896 if (q >
zero) p = -p;
900 if ( std::abs(p) >= std::abs(half*q*etmp) || p <= q*dL || p >= q*dR ) {
901 e = (t > tm ? dL : dR);
907 if (u-tL < tol2 || tR-u < tol2) d = (tm >= t ? tol1 : -tol1);
911 e = (t > tm ? dL : dR);
914 u = t + (std::abs(d) >= tol1 ? d : (d >=
zero ? tol1 : -tol1));
917 nu = nobj.
value(pwa,tol); state_->nnval++;
918 Qu = u * gs + nu - nold;
919 pu = half * u * u * kappa + Qu;
924 pv = pw; pw = pt; pt = pu;
930 if (pu <= pw || w == t) {
934 else if (pu <= pv || v == t || v == w) {
939 tol1 = tol0*std::abs(t)+eps;
941 tol3 = eps0 * std::max(std::abs(Qt),one);
942 if (pt <= (mu*std::min(
zero,Qt)+tol3) && std::abs(t-tm) <= (tol2-half*(tR-tL)))
break;
950 template<
typename Real>
966 std::ostream &outStream) {
986 const Real
zero(0), half(0.5), one(1), two(2);
987 const Real del2(del*del);
988 Real tol(std::sqrt(ROL_EPSILON<Real>())), safeguard(tol);
989 Real mold(sval+nval), nold(nval);
990 Real snorm(0), snorm0(0), gnorm(0), gnorm0(0), gnorm2(0);
991 Real alpha(1), beta(1), lambdaTmp(1), lambda(1), eta(etaNCG_);
992 Real alphaMax(1), pred(0), lam1(1);
993 Real sy(0), gg(0), sHs(0), gs(0), ds(0), ss(0), ss0(0);
1001 lambdaTmp = t0_ / gmod.
norm();
1002 lambda = std::max(lambdaMin_,std::min(lambdaTmp,lambdaMax_));
1006 pgstep(pwa1, pwa2, nobj, y, gmod.
dual(), lambda, tol);
1007 pwa2.
scale(one/lambda);
1012 const Real gtol = std::min(tol1_,tol2_*gnorm);
1014 if (verbosity_>1) outStream <<
" Nonlinear Conjugate Gradient" << std::endl;
1018 while (SPiter_ < maxit_) {
1022 model.
hessVec(dwa,s,x,tol); nhess_++;
1028 alphaMax = (-ds + std::sqrt(ds*ds + ss*(del2 - snorm0*snorm0)))/ss;
1029 dbls(alpha,nold,pred,y,s,lam1,alphaMax,sHs,gs,nobj,pwa5);
1042 gmod.
axpy(alpha, dwa);
1043 sval += alpha*(gs + half*alpha*sHs);
1046 pwa3.
set(y); pwa3.
axpy(-one,x);
1047 ss0 += alpha*(alpha*ss + two*ds);
1048 snorm0 = std::sqrt(ss0);
1050 if (snorm0 >= (one-safeguard)*del) { SPflag_ = 2;
break; }
1053 lambdaTmp = (sHs <= safeguard) ? t0_/gmod.
norm() : ss/sHs;
1054 lambda = std::max(lambdaMin_, std::min(lambdaMax_, lambdaTmp));
1058 pgstep(pwa1, pwa2, nobj, y, gmod.
dual(), lambda, tol);
1059 pwa2.
scale(one/lambda);
1061 gnorm = pwa2.
norm();
1062 if (gnorm <= gtol) { SPflag_ = 0;
break; }
1064 gnorm2 = gnorm * gnorm;
1067 beta = gnorm2/(gnorm0 * gnorm0);
1071 pwa5.
set(pwa4); pwa5.
axpy(-one,pwa2);
1072 beta = std::max(
zero, -pwa5.
dot(pwa2)/(gnorm0*gnorm0));
1075 pwa5.
set(pwa4); pwa5.
axpy(-one,pwa2);
1077 gg = pwa2.
dot(pwa4);
1078 eta = -one/(s.
norm()*std::min(etaNCG_, gnorm0));
1079 beta = std::max(eta, (gnorm2-gg-two*pwa2.
dot(s)*(gnorm2-two*gg+(gnorm0*gnorm0))/sy)/sy);
1082 pwa5.
set(pwa4); pwa5.
axpy(-one,pwa2);
1083 beta = std::max(
zero, -pwa2.
dot(pwa5)/s.
dot(pwa5));
1086 pwa5.
set(pwa4); pwa5.
axpy(-one,pwa2);
1087 beta = std::max(
zero, gnorm2/s.
dot(pwa5));
1090 pwa5.
set(pwa4); pwa5.
axpy(-one,pwa2);
1091 beta = std::max(-gnorm2, std::min(gnorm2, -pwa5.
dot(pwa2)))/(gnorm0*gnorm0);
1094 pwa5.
set(pwa4); pwa5.
axpy(-one,pwa2);
1095 beta = std::max(
zero, std::min(-pwa2.
dot(pwa5), gnorm2)/s.
dot(pwa5));
1100 if (beta !=
zero && beta < ROL_INF<Real>()){
1106 nval = nobj.
value(pwa4,tol); state_->nnval++;
1107 gs = gmod.
apply(pwa5);
1108 if (gs + nval - nold <= -(one - desPar_)*gnorm2) {
1122 if (verbosity_ > 1) {
1123 outStream << std::endl;
1124 outStream <<
" Iterate: " << SPiter_ << std::endl;
1125 outStream <<
" Spectral step length (lambda): " << lambda << std::endl;
1126 outStream <<
" Step length (alpha): " << alpha << std::endl;
1127 outStream <<
" NCG parameter (beta): " << beta << std::endl;
1128 outStream <<
" Model decrease (pRed): " << mold-(sval+nold) << std::endl;
1129 outStream <<
" Step size: " << snorm0 << std::endl;
1130 outStream <<
" Optimality criterion: " << gnorm << std::endl;
1131 outStream <<
" Optimality tolerance: " << gtol << std::endl;
1132 outStream << std::endl;
1138 template<
typename Real>
1140 std::ios_base::fmtflags osFlags(os.flags());
1141 if (verbosity_ > 1) {
1142 os << std::string(114,
'-') << std::endl;
1143 switch (algSelect_) {
1149 os <<
"trust-region method status output definitions" << std::endl << std::endl;
1150 os <<
" iter - Number of iterates (steps taken)" << std::endl;
1151 os <<
" value - Objective function value" << std::endl;
1152 os <<
" gnorm - Norm of the gradient" << std::endl;
1153 os <<
" snorm - Norm of the step (update to optimization vector)" << std::endl;
1154 os <<
" delta - Trust-Region radius" << std::endl;
1155 os <<
" #sval - Number of times the smooth objective function was evaluated" << std::endl;
1156 os <<
" #nval - Number of times the nonsmooth objective function was evaluated" << std::endl;
1157 os <<
" #grad - Number of times the gradient was computed" << std::endl;
1158 os <<
" #hess - Number of times the Hessian was applied" << std::endl;
1159 os <<
" #prox - Number of times the proximal operator was computed" << std::endl;
1161 os <<
" tr_flag - Trust-Region flag" << std::endl;
1167 os <<
" iterSP - Number of Spectral Projected Gradient iterations" << std::endl << std::endl;
1168 os <<
" flagSP - Trust-Region Spectral Projected Gradient flag" << std::endl;
1169 os <<
" 0 - Converged" << std::endl;
1170 os <<
" 1 - Iteration Limit Exceeded" << std::endl;
1171 os << std::string(114,
'-') << std::endl;
1174 os << std::setw(6) << std::left <<
"iter";
1175 os << std::setw(15) << std::left <<
"value";
1176 os << std::setw(15) << std::left <<
"gnorm";
1177 os << std::setw(15) << std::left <<
"snorm";
1178 os << std::setw(15) << std::left <<
"delta";
1179 os << std::setw(10) << std::left <<
"#sval";
1180 os << std::setw(10) << std::left <<
"#nval";
1181 os << std::setw(10) << std::left <<
"#grad";
1182 os << std::setw(10) << std::left <<
"#hess";
1183 os << std::setw(10) << std::left <<
"#prox";
1184 os << std::setw(10) << std::left <<
"tr_flag";
1185 os << std::setw(10) << std::left <<
"iterSP";
1186 os << std::setw(10) << std::left <<
"flagSP";
1191 template<
typename Real>
1193 std::ios_base::fmtflags osFlags(os.flags());
1195 switch (algSelect_) {
1201 os <<
"Trust-Region Method (Type P)" << std::endl;
1205 template<
typename Real>
1207 std::ios_base::fmtflags osFlags(os.flags());
1208 os << std::scientific << std::setprecision(6);
1209 if ( state_->iter == 0 ) writeName(os);
1210 if ( write_header ) writeHeader(os);
1211 if ( state_->iter == 0 ) {
1213 os << std::setw(6) << std::left << state_->iter;
1214 os << std::setw(15) << std::left << state_->value;
1215 os << std::setw(15) << std::left << state_->gnorm;
1216 os << std::setw(15) << std::left <<
"---";
1217 os << std::setw(15) << std::left << state_->searchSize;
1218 os << std::setw(10) << std::left << state_->nsval;
1219 os << std::setw(10) << std::left << state_->nnval;
1220 os << std::setw(10) << std::left << state_->ngrad;
1221 os << std::setw(10) << std::left << nhess_;
1222 os << std::setw(10) << std::left << state_->nprox;
1223 os << std::setw(10) << std::left <<
"---";
1224 os << std::setw(10) << std::left <<
"---";
1225 os << std::setw(10) << std::left <<
"---";
1230 os << std::setw(6) << std::left << state_->iter;
1231 os << std::setw(15) << std::left << state_->value;
1232 os << std::setw(15) << std::left << state_->gnorm;
1233 os << std::setw(15) << std::left << state_->snorm;
1234 os << std::setw(15) << std::left << state_->searchSize;
1235 os << std::setw(10) << std::left << state_->nsval;
1236 os << std::setw(10) << std::left << state_->nnval;
1237 os << std::setw(10) << std::left << state_->ngrad;
1238 os << std::setw(10) << std::left << nhess_;
1239 os << std::setw(10) << std::left << state_->nprox;
1240 os << std::setw(10) << std::left << TRflag_;
1241 os << std::setw(10) << std::left << SPiter_;
1242 os << std::setw(10) << std::left << SPflag_;
Provides the interface to evaluate objective functions.
void dspg2(Vector< Real > &y, Real &sval, Real &nval, Real &pRed, Vector< Real > &gmod, const Vector< Real > &x, Real del, TrustRegionModel_U< Real > &model, Objective< Real > &nobj, Vector< Real > &pwa, Vector< Real > &pwa1, Vector< Real > &pwa2, Vector< Real > &dwa, std::ostream &outStream=std::cout)
virtual const Vector & dual() const
Return dual representation of , for example, the result of applying a Riesz map, or change of basis...
Real computeValue(Real inTol, Real &outTol, Real pRed, Real &fold, int iter, const Vector< Real > &x, const Vector< Real > &xold, Objective< Real > &obj)
virtual void scale(const Real alpha)=0
Compute where .
void dspg(Vector< Real > &y, Real &sval, Real &nval, Vector< Real > &gmod, const Vector< Real > &x, Real del, TrustRegionModel_U< Real > &model, Objective< Real > &nobj, Vector< Real > &ymin, Vector< Real > &pwa, Vector< Real > &pwa1, Vector< Real > &pwa2, Vector< Real > &pwa3, Vector< Real > &pwa4, Vector< Real > &pwa5, Vector< Real > &dwa, std::ostream &outStream=std::cout)
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
virtual Real apply(const Vector< Real > &x) const
Apply to a dual vector. This is equivalent to the call .
TrustRegionAlgorithm(ParameterList &list, const Ptr< Secant< Real >> &secant=nullPtr)
virtual void plus(const Vector &x)=0
Compute , where .
virtual void axpy(const Real alpha, const Vector &x)
Compute where .
void initialize(Vector< Real > &x, const Vector< Real > &g, Real ftol, Objective< Real > &sobj, Objective< Real > &nobj, Vector< Real > &px, Vector< Real > &dg, std::ostream &outStream=std::cout)
virtual Real value(const Vector< Real > &x, Real &tol)=0
Compute value.
virtual void prox(Vector< Real > &Pv, const Vector< Real > &v, Real t, Real &tol)
Compute the proximity operator.
ESecant StringToESecant(std::string s)
virtual void zero()
Set to zero vector.
Defines the linear algebra or vector space interface.
Real dcauchy(Vector< Real > &s, Real &alpha, Real &sval, Real &nval, const Vector< Real > &x, const Vector< Real > &g, Real del, TrustRegionModel_U< Real > &model, Objective< Real > &nobj, Vector< Real > &px, Vector< Real > &dwa, Vector< Real > &dwa1, std::ostream &outStream=std::cout)
virtual void update(const Vector< Real > &x, UpdateType type, int iter=-1)
Update objective function.
virtual Real dot(const Vector &x) const =0
Compute where .
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
void dbls(Real &alpha, Real &nval, Real &pred, const Vector< Real > &y, const Vector< Real > &s, Real lambda, Real tmax, Real kappa, Real gs, Objective< Real > &nobj, Vector< Real > &pwa)
virtual void hessVec(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &s, Real &tol) override
Apply Hessian approximation to vector.
ETRFlag
Enumation of flags used by trust-region solvers.
ETrustRegionP StringToETrustRegionP(std::string s)
virtual void gradient(Vector< Real > &g, const Vector< Real > &x, Real &tol)
Compute gradient.
std::string NumberToString(T Number)
Provides the interface to evaluate trust-region model functions.
void run(Vector< Real > &x, const Vector< Real > &g, Objective< Real > &sobj, Objective< Real > &nobj, std::ostream &outStream=std::cout) override
Run algorithm on unconstrained problems (Type-U). This general interface supports the use of dual opt...
Provides interface for and implements limited-memory secant operators.
Provides an interface to check status of optimization algorithms.
std::string ETRFlagToString(ETRFlag trf)
void writeOutput(std::ostream &os, bool write_header=false) const override
Print iterate status.
void dprox(Vector< Real > &x, const Vector< Real > &x0, Real t, Real del, Objective< Real > &nobj, Vector< Real > &y0, Vector< Real > &y1, Vector< Real > &yc, Vector< Real > &pwa, std::ostream &outStream=std::cout) const
void dncg(Vector< Real > &y, Real &sval, Real &nval, Vector< Real > &gmod, const Vector< Real > &x, Real del, TrustRegionModel_U< Real > &model, Objective< Real > &nobj, Vector< Real > &s, Vector< Real > &pwa1, Vector< Real > &pwa2, Vector< Real > &pwa3, Vector< Real > &pwa4, Vector< Real > &pwa5, Vector< Real > &dwa, std::ostream &outStream=std::cout)
virtual void set(const Vector &x)
Set where .
virtual Real norm() const =0
Returns where .
virtual void writeExitStatus(std::ostream &os) const
void initialize(const Vector< Real > &x, const Vector< Real > &g)
void writeName(std::ostream &os) const override
Print step name.
void computeGradient(const Vector< Real > &x, Vector< Real > &g, Vector< Real > &px, Vector< Real > &dg, Vector< Real > &pwa, Real del, Objective< Real > &sobj, Objective< Real > &nobj, bool accept, Real >ol, Real &gnorm, std::ostream &outStream=std::cout) const
void writeHeader(std::ostream &os) const override
Print iterate header.