10 #ifndef ROL_TYPEP_INEXACTNEWTONALGORITHM_DEF_HPP
11 #define ROL_TYPEP_INEXACTNEWTONALGORITHM_DEF_HPP
21 template<
typename Real>
29 ParameterList &lslist = list.sublist(
"Step").sublist(
"Line Search");
30 t0_ = list.sublist(
"Status Test").get(
"Gradient Scale" , 1.0);
31 initProx_ = lslist.get(
"Apply Prox to Initial Guess",
false);
32 maxit_ = lslist.get(
"Function Evaluation Limit", 20);
33 c1_ = lslist.get(
"Sufficient Decrease Tolerance", 1e-4);
34 rhodec_ = lslist.sublist(
"Line-Search Method").get(
"Backtracking Rate", 0.5);
35 sigma1_ = lslist.sublist(
"Inexact Newton").get(
"Lower Step Size Safeguard", 0.1);
36 sigma2_ = lslist.sublist(
"Inexact Newton").get(
"Upper Step Size Safeguard", 0.9);
37 algoName_ = lslist.sublist(
"Inexact Newton").get(
"Subproblem Solver",
"Spectral Gradient");
38 int sp_maxit = lslist.sublist(
"Inexact Newton").get(
"Subproblem Iteration Limit", 1000);
39 sp_tol1_ = lslist.sublist(
"Inexact Newton").get(
"Subproblem Absolute Tolerance", 1e-4);
40 sp_tol2_ = lslist.sublist(
"Inexact Newton").get(
"Subproblem Relative Tolerance", 1e-2);
41 sp_exp_ = lslist.sublist(
"Inexact Newton").get(
"Subproblem Tolerance Exponent", 1.0);
42 Real opt_tol = lslist.sublist(
"Status Test").get(
"Gradient Tolerance", 1e-8);
44 verbosity_ = list.sublist(
"General").get(
"Output Level", 0);
47 list_.sublist(
"Status Test").set(
"Iteration Limit", sp_maxit);
52 template<
typename Real>
59 std::ostream &outStream) {
61 Real tol(std::sqrt(ROL_EPSILON<Real>()));
65 Real ftol = std::sqrt(ROL_EPSILON<Real>());
67 state_->iterateVec->set(x);
68 nobj.
prox(x,*state_->iterateVec,one,tol); state_->nprox++;
72 state_->svalue = sobj.
value(x,ftol); state_->nsval++;
73 state_->nvalue = nobj.
value(x,ftol); state_->nnval++;
74 state_->value = state_->svalue + state_->nvalue;
75 sobj.
gradient(*state_->gradientVec,x,ftol); state_->ngrad++;
76 dg.
set(state_->gradientVec->dual());
77 pgstep(*state_->iterateVec,px,nobj,x,dg,t0_,tol);
78 state_->gnorm = px.
norm() / t0_;
79 state_->snorm = ROL_INF<Real>();
83 template<
typename Real>
88 std::ostream &outStream ) {
89 const Real half(0.5), one(1), eps(ROL_EPSILON<Real>());
92 initialize(x,g,sobj,nobj,*gp,*px,outStream);
93 Real strial(0), ntrial(0), ftrial(0), gs(0), Qk(0), rhoTmp(0);
94 Real tol(std::sqrt(ROL_EPSILON<Real>())), gtol(1);
96 Ptr<TypeP::Algorithm<Real>> algo;
97 Ptr<NewtonObj> qobj = makePtr<NewtonObj>(makePtrFromRef(sobj),x,g);
100 if (verbosity_ > 0) writeOutput(outStream,
true);
103 xs->set(*state_->iterateVec);
104 state_->iterateVec->set(x);
105 while (status_->check(*state_)) {
106 qobj->setData(x,*state_->gradientVec);
108 gtol = std::max(sp_tol_min_,std::min(sp_tol1_,sp_tol2_*std::pow(state_->gnorm,sp_exp_)));
109 list_.sublist(
"Status Test").set(
"Gradient Tolerance",gtol);
110 if (algoName_ ==
"Line Search") algo = makePtr<TypeP::ProxGradientAlgorithm<Real>>(list_);
111 else if (algoName_ ==
"iPiano") algo = makePtr<TypeP::iPianoAlgorithm<Real>>(list_);
112 else if (algoName_ ==
"Trust Region") algo = makePtr<TypeP::TrustRegionAlgorithm<Real>>(list_);
113 else algo = makePtr<TypeP::SpectralGradientAlgorithm<Real>>(list_);
114 algo->run(*xs,*qobj,nobj,outStream);
115 s->set(*xs); s->axpy(-one,x);
116 spgIter_ = algo->getState()->iter;
117 nhess_ += qobj->numHessVec();
118 state_->nprox += staticPtrCast<const TypeP::AlgorithmState<Real>>(algo->getState())->nprox;
121 state_->searchSize = one;
122 x.set(*state_->iterateVec);
123 x.axpy(state_->searchSize,*s);
126 strial = sobj.
value(x,tol);
127 ntrial = nobj.
value(x,tol);
128 ftrial = strial + ntrial;
130 gs = state_->gradientVec->apply(*s);
131 Qk = gs + ntrial - state_->nvalue;
132 if (verbosity_ > 1) {
133 outStream <<
" In TypeP::InexactNewtonAlgorithm: Line Search" << std::endl;
134 outStream <<
" Step size: " << state_->searchSize << std::endl;
135 outStream <<
" Trial objective value: " << ftrial << std::endl;
136 outStream <<
" Computed reduction: " << state_->value-ftrial << std::endl;
137 outStream <<
" Dot product of gradient and step: " << gs << std::endl;
138 outStream <<
" Sufficient decrease bound: " << -Qk*c1_ << std::endl;
139 outStream <<
" Number of function evaluations: " << ls_nfval_ << std::endl;
143 x.set(*state_->iterateVec);
144 x.axpy(state_->searchSize,*s);
147 strial = sobj.
value(x,tol);
148 ntrial = nobj.
value(x,tol);
149 ftrial = strial + ntrial;
151 gs = state_->gradientVec->apply(*s);
152 Qk = gs + ntrial - state_->nvalue;
154 while ( ftrial > state_->value + c1_*Qk && ls_nfval_ < maxit_ ) {
155 rhoTmp = -half * Qk / (strial-state_->svalue-state_->searchSize*gs);
156 state_->searchSize = ((sigma1_ <= rhoTmp && rhoTmp <= sigma2_) ? rhoTmp : rhodec_) * state_->searchSize;
157 x.set(*state_->iterateVec);
158 x.axpy(state_->searchSize,*s);
161 strial = sobj.
value(x,tol);
162 ntrial = nobj.
value(x,tol);
163 ftrial = strial + ntrial;
164 Qk = state_->searchSize * gs + ntrial - state_->nvalue;
166 if (verbosity_ > 1) {
167 outStream << std::endl;
168 outStream <<
" Step size: " << state_->searchSize << std::endl;
169 outStream <<
" Trial objective value: " << ftrial << std::endl;
170 outStream <<
" Computed reduction: " << state_->value-ftrial << std::endl;
171 outStream <<
" Dot product of gradient and step: " << gs << std::endl;
172 outStream <<
" Sufficient decrease bound: " << -Qk*c1_ << std::endl;
173 outStream <<
" Number of function evaluations: " << ls_nfval_ << std::endl;
176 state_->nsval += ls_nfval_;
177 state_->nnval += ls_nfval_;
180 state_->stepVec->set(*s);
181 state_->stepVec->scale(state_->searchSize);
182 state_->snorm = state_->stepVec->norm();
185 state_->iterateVec->set(x);
189 state_->value = ftrial;
190 state_->svalue = strial;
191 state_->nvalue = ntrial;
194 sobj.
gradient(*state_->gradientVec,x,tol); state_->ngrad++;
195 gp->set(state_->gradientVec->dual());
198 pgstep(*xs,*px,nobj,x,*gp,t0_,tol);
199 state_->gnorm = s->norm() / t0_;
202 if (verbosity_ > 0) writeOutput(outStream,writeHeader_);
207 template<
typename Real>
209 std::ios_base::fmtflags osFlags(os.flags());
210 if (verbosity_ > 1) {
211 os << std::string(114,
'-') << std::endl;
212 os <<
"Line-Search Inexact Proximal Newton";
213 os <<
" status output definitions" << std::endl << std::endl;
214 os <<
" iter - Number of iterates (steps taken)" << std::endl;
215 os <<
" value - Objective function value" << std::endl;
216 os <<
" gnorm - Norm of the gradient" << std::endl;
217 os <<
" snorm - Norm of the step (update to optimization vector)" << std::endl;
218 os <<
" alpha - Line search step length" << std::endl;
219 os <<
" #sval - Cumulative number of times the smooth objective function was evaluated" << std::endl;
220 os <<
" #nval - Cumulative number of times the nonsmooth objective function was evaluated" << std::endl;
221 os <<
" #grad - Cumulative number of times the gradient was computed" << std::endl;
222 os <<
" #hess - Cumulative number of times the Hessian was applied" << std::endl;
223 os <<
" #prox - Cumulative number of times the projection was computed" << std::endl;
224 os <<
" ls_#fval - Number of the times the objective function was evaluated during the line search" << std::endl;
225 os <<
" sp_iter - Number iterations to compute quasi-Newton step" << std::endl;
226 os << std::string(114,
'-') << std::endl;
230 os << std::setw(6) << std::left <<
"iter";
231 os << std::setw(15) << std::left <<
"value";
232 os << std::setw(15) << std::left <<
"gnorm";
233 os << std::setw(15) << std::left <<
"snorm";
234 os << std::setw(15) << std::left <<
"alpha";
235 os << std::setw(10) << std::left <<
"#sval";
236 os << std::setw(10) << std::left <<
"#nval";
237 os << std::setw(10) << std::left <<
"#grad";
238 os << std::setw(10) << std::left <<
"#hess";
239 os << std::setw(10) << std::left <<
"#prox";
240 os << std::setw(10) << std::left <<
"#ls_fval";
241 os << std::setw(10) << std::left <<
"sp_iter";
246 template<
typename Real>
248 std::ios_base::fmtflags osFlags(os.flags());
249 os << std::endl <<
"Line-Search Inexact Proximal Newton (Type P)" << std::endl;
253 template<
typename Real>
255 std::ios_base::fmtflags osFlags(os.flags());
256 os << std::scientific << std::setprecision(6);
257 if ( state_->iter == 0 ) writeName(os);
258 if ( write_header ) writeHeader(os);
259 if ( state_->iter == 0 ) {
261 os << std::setw(6) << std::left << state_->iter;
262 os << std::setw(15) << std::left << state_->value;
263 os << std::setw(15) << std::left << state_->gnorm;
264 os << std::setw(15) << std::left <<
"---";
265 os << std::setw(15) << std::left <<
"---";
266 os << std::setw(10) << std::left << state_->nsval;
267 os << std::setw(10) << std::left << state_->nnval;
268 os << std::setw(10) << std::left << state_->ngrad;
269 os << std::setw(10) << std::left << nhess_;
270 os << std::setw(10) << std::left << state_->nprox;
271 os << std::setw(10) << std::left <<
"---";
272 os << std::setw(10) << std::left <<
"---";
277 os << std::setw(6) << std::left << state_->iter;
278 os << std::setw(15) << std::left << state_->value;
279 os << std::setw(15) << std::left << state_->gnorm;
280 os << std::setw(15) << std::left << state_->snorm;
281 os << std::setw(15) << std::left << state_->searchSize;
282 os << std::setw(10) << std::left << state_->nsval;
283 os << std::setw(10) << std::left << state_->nnval;
284 os << std::setw(10) << std::left << state_->ngrad;
285 os << std::setw(10) << std::left << nhess_;
286 os << std::setw(10) << std::left << state_->nprox;
287 os << std::setw(10) << std::left << ls_nfval_;
288 os << std::setw(10) << std::left << spgIter_;
Provides the interface to evaluate objective functions.
void writeOutput(std::ostream &os, bool write_header=false) const override
Print iterate status.
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
int maxit_
Maximum number of line search steps (default: 20)
virtual Real value(const Vector< Real > &x, Real &tol)=0
Compute value.
virtual void prox(Vector< Real > &Pv, const Vector< Real > &v, Real t, Real &tol)
Compute the proximity operator.
Real sigma1_
Lower safeguard for quadratic line search (default: 0.1)
Defines the linear algebra or vector space interface.
virtual void update(const Vector< Real > &x, UpdateType type, int iter=-1)
Update objective function.
Real sigma2_
Upper safeguard for quadratic line search (default: 0.9)
Real c1_
Sufficient Decrease Parameter (default: 1e-4)
Real rhodec_
Backtracking rate (default: 0.5)
virtual void gradient(Vector< Real > &g, const Vector< Real > &x, Real &tol)
Compute gradient.
void writeName(std::ostream &os) const override
Print step name.
Provides an interface to check status of optimization algorithms.
InexactNewtonAlgorithm(ParameterList &list)
const Ptr< CombinedStatusTest< Real > > status_
void initialize(Vector< Real > &x, const Vector< Real > &g, Objective< Real > &sobj, Objective< Real > &nobj, Vector< Real > &dg, Vector< Real > &px, std::ostream &outStream=std::cout)
virtual void set(const Vector &x)
Set where .
void run(Vector< Real > &x, const Vector< Real > &g, Objective< Real > &sobj, Objective< Real > &nobj, std::ostream &outStream=std::cout) override
Run algorithm on unconstrained problems (Type-U). This general interface supports the use of dual opt...
virtual Real norm() const =0
Returns where .
virtual void writeExitStatus(std::ostream &os) const
void initialize(const Vector< Real > &x, const Vector< Real > &g)
void writeHeader(std::ostream &os) const override
Print iterate header.