ROL
ROL_TypeP_InexactNewtonAlgorithm_Def.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_TYPEP_QUASINEWTONALGORITHM_DEF_HPP
45 #define ROL_TYPEP_QUASINEWTONALGORITHM_DEF_HPP
46 
51 
52 namespace ROL {
53 namespace TypeP {
54 
55 template<typename Real>
57  : list_(list) {
58  // Set status test
59  status_->reset();
60  status_->add(makePtr<StatusTest<Real>>(list));
61 
62  // Parse parameter list
63  ParameterList &lslist = list.sublist("Step").sublist("Line Search");
64  t0_ = list.sublist("Status Test").get("Gradient Scale" , 1.0);
65  initProx_ = lslist.get("Apply Prox to Initial Guess", false);
66  maxit_ = lslist.get("Function Evaluation Limit", 20);
67  c1_ = lslist.get("Sufficient Decrease Tolerance", 1e-4);
68  rhodec_ = lslist.sublist("Line-Search Method").get("Backtracking Rate", 0.5);
69  sigma1_ = lslist.sublist("Inexact Newton").get("Lower Step Size Safeguard", 0.1);
70  sigma2_ = lslist.sublist("Inexact Newton").get("Upper Step Size Safeguard", 0.9);
71  algoName_ = lslist.sublist("Inexact Newton").get("Subproblem Solver","Spectral Gradient");
72  int sp_maxit = lslist.sublist("Inexact Newton").get("Subproblem Iteration Limit", 1000);
73  sp_tol1_ = lslist.sublist("Inexact Newton").get("Subproblem Absolute Tolerance", 1e-4);
74  sp_tol2_ = lslist.sublist("Inexact Newton").get("Subproblem Relative Tolerance", 1e-2);
75  sp_exp_ = lslist.sublist("Inexact Newton").get("Subproblem Tolerance Exponent", 1.0);
76  Real opt_tol = lslist.sublist("Status Test").get("Gradient Tolerance", 1e-8);
77  sp_tol_min_ = static_cast<Real>(1e-4)*opt_tol;
78  verbosity_ = list.sublist("General").get("Output Level", 0);
80 
81  list_.sublist("Status Test").set("Iteration Limit", sp_maxit);
82  list_.sublist("General").set("Output Level", verbosity_>0 ? verbosity_-1 : 0);
83 }
84 
85 
86 template<typename Real>
88  const Vector<Real> &g,
89  Objective<Real> &sobj,
90  Objective<Real> &nobj,
91  Vector<Real> &dg,
92  Vector<Real> &px,
93  std::ostream &outStream) {
94  const Real one(1);
95  Real tol(std::sqrt(ROL_EPSILON<Real>()));
96  // Initialize data
98  // Update approximate gradient and approximate objective function.
99  Real ftol = std::sqrt(ROL_EPSILON<Real>());
100  if (initProx_) {
101  state_->iterateVec->set(x);
102  nobj.prox(x,*state_->iterateVec,one,tol); state_->nprox++;
103  }
104  sobj.update(x,UpdateType::Initial,state_->iter);
105  nobj.update(x,UpdateType::Initial,state_->iter);
106  state_->svalue = sobj.value(x,ftol); state_->nsval++;
107  state_->nvalue = nobj.value(x,ftol); state_->nnval++;
108  state_->value = state_->svalue + state_->nvalue;
109  sobj.gradient(*state_->gradientVec,x,ftol); state_->ngrad++;
110  dg.set(state_->gradientVec->dual());
111  pgstep(*state_->iterateVec,px,nobj,x,dg,t0_,tol);
112  state_->gnorm = px.norm() / t0_;
113  state_->snorm = ROL_INF<Real>();
114  nhess_ = 0;
115 }
116 
117 template<typename Real>
119  const Vector<Real> &g,
120  Objective<Real> &sobj,
121  Objective<Real> &nobj,
122  std::ostream &outStream ) {
123  const Real half(0.5), one(1), eps(ROL_EPSILON<Real>());
124  // Initialize trust-region data
125  Ptr<Vector<Real>> s = x.clone(), gp = x.clone(), xs = x.clone(), px = x.clone();
126  initialize(x,g,sobj,nobj,*gp,*px,outStream);
127  Real strial(0), ntrial(0), ftrial(0), gs(0), Qk(0), rhoTmp(0);
128  Real tol(std::sqrt(ROL_EPSILON<Real>())), gtol(1);
129 
130  Ptr<TypeP::Algorithm<Real>> algo;
131  Ptr<NewtonObj> qobj = makePtr<NewtonObj>(makePtrFromRef(sobj),x,g);
132 
133  // Output
134  if (verbosity_ > 0) writeOutput(outStream,true);
135 
136  // Compute steepest descent step
137  xs->set(*state_->iterateVec);
138  state_->iterateVec->set(x);
139  while (status_->check(*state_)) {
140  qobj->setData(x,*state_->gradientVec);
141  // Compute step
142  gtol = std::max(sp_tol_min_,std::min(sp_tol1_,sp_tol2_*std::pow(state_->gnorm,sp_exp_)));
143  list_.sublist("Status Test").set("Gradient Tolerance",gtol);
144  if (algoName_ == "Line Search") algo = makePtr<TypeP::ProxGradientAlgorithm<Real>>(list_);
145  else if (algoName_ == "iPiano") algo = makePtr<TypeP::iPianoAlgorithm<Real>>(list_);
146  else if (algoName_ == "Trust Region") algo = makePtr<TypeP::TrustRegionAlgorithm<Real>>(list_);
147  else algo = makePtr<TypeP::SpectralGradientAlgorithm<Real>>(list_);
148  algo->run(*xs,*qobj,nobj,outStream);
149  s->set(*xs); s->axpy(-one,x);
150  spgIter_ = algo->getState()->iter;
151  nhess_ += qobj->numHessVec();
152  state_->nprox += staticPtrCast<const TypeP::AlgorithmState<Real>>(algo->getState())->nprox;
153 
154  // Perform backtracking line search
155  state_->searchSize = one;
156  x.set(*state_->iterateVec);
157  x.axpy(state_->searchSize,*s);
158  sobj.update(x,UpdateType::Trial);
159  nobj.update(x,UpdateType::Trial);
160  strial = sobj.value(x,tol);
161  ntrial = nobj.value(x,tol);
162  ftrial = strial + ntrial;
163  ls_nfval_ = 1;
164  gs = state_->gradientVec->apply(*s);
165  Qk = gs + ntrial - state_->nvalue;
166  if (verbosity_ > 1) {
167  outStream << " In TypeP::InexactNewtonAlgorithm: Line Search" << std::endl;
168  outStream << " Step size: " << state_->searchSize << std::endl;
169  outStream << " Trial objective value: " << ftrial << std::endl;
170  outStream << " Computed reduction: " << state_->value-ftrial << std::endl;
171  outStream << " Dot product of gradient and step: " << gs << std::endl;
172  outStream << " Sufficient decrease bound: " << -Qk*c1_ << std::endl;
173  outStream << " Number of function evaluations: " << ls_nfval_ << std::endl;
174  }
175  if (Qk > -eps) {
176  s->set(*px);
177  x.set(*state_->iterateVec);
178  x.axpy(state_->searchSize,*s);
179  sobj.update(x,UpdateType::Trial);
180  nobj.update(x,UpdateType::Trial);
181  strial = sobj.value(x,tol);
182  ntrial = nobj.value(x,tol);
183  ftrial = strial + ntrial;
184  ls_nfval_++;
185  gs = state_->gradientVec->apply(*s);
186  Qk = gs + ntrial - state_->nvalue;
187  }
188  while ( ftrial > state_->value + c1_*Qk && ls_nfval_ < maxit_ ) {
189  rhoTmp = -half * Qk / (strial-state_->svalue-state_->searchSize*gs);
190  state_->searchSize = ((sigma1_ <= rhoTmp && rhoTmp <= sigma2_) ? rhoTmp : rhodec_) * state_->searchSize;
191  x.set(*state_->iterateVec);
192  x.axpy(state_->searchSize,*s);
193  sobj.update(x,UpdateType::Trial);
194  nobj.update(x,UpdateType::Trial);
195  strial = sobj.value(x,tol);
196  ntrial = nobj.value(x,tol);
197  ftrial = strial + ntrial;
198  Qk = state_->searchSize * gs + ntrial - state_->nvalue;
199  ls_nfval_++;
200  if (verbosity_ > 1) {
201  outStream << std::endl;
202  outStream << " Step size: " << state_->searchSize << std::endl;
203  outStream << " Trial objective value: " << ftrial << std::endl;
204  outStream << " Computed reduction: " << state_->value-ftrial << std::endl;
205  outStream << " Dot product of gradient and step: " << gs << std::endl;
206  outStream << " Sufficient decrease bound: " << -Qk*c1_ << std::endl;
207  outStream << " Number of function evaluations: " << ls_nfval_ << std::endl;
208  }
209  }
210  state_->nsval += ls_nfval_;
211  state_->nnval += ls_nfval_;
212 
213  // Compute norm of step
214  state_->stepVec->set(*s);
215  state_->stepVec->scale(state_->searchSize);
216  state_->snorm = state_->stepVec->norm();
217 
218  // Update iterate
219  state_->iterateVec->set(x);
220 
221  // Compute new value and gradient
222  state_->iter++;
223  state_->value = ftrial;
224  state_->svalue = strial;
225  state_->nvalue = ntrial;
226  sobj.update(x,UpdateType::Accept,state_->iter);
227  nobj.update(x,UpdateType::Accept,state_->iter);
228  sobj.gradient(*state_->gradientVec,x,tol); state_->ngrad++;
229  gp->set(state_->gradientVec->dual());
230 
231  // Compute projected gradient norm
232  pgstep(*xs,*px,nobj,x,*gp,t0_,tol);
233  state_->gnorm = s->norm() / t0_;
234 
235  // Update Output
236  if (verbosity_ > 0) writeOutput(outStream,writeHeader_);
237  }
238  if (verbosity_ > 0) TypeP::Algorithm<Real>::writeExitStatus(outStream);
239 }
240 
241 template<typename Real>
242 void InexactNewtonAlgorithm<Real>::writeHeader( std::ostream& os ) const {
243  std::ios_base::fmtflags osFlags(os.flags());
244  if (verbosity_ > 1) {
245  os << std::string(114,'-') << std::endl;
246  os << "Line-Search Inexact Proximal Newton";
247  os << " status output definitions" << std::endl << std::endl;
248  os << " iter - Number of iterates (steps taken)" << std::endl;
249  os << " value - Objective function value" << std::endl;
250  os << " gnorm - Norm of the gradient" << std::endl;
251  os << " snorm - Norm of the step (update to optimization vector)" << std::endl;
252  os << " alpha - Line search step length" << std::endl;
253  os << " #sval - Cumulative number of times the smooth objective function was evaluated" << std::endl;
254  os << " #nval - Cumulative number of times the nonsmooth objective function was evaluated" << std::endl;
255  os << " #grad - Cumulative number of times the gradient was computed" << std::endl;
256  os << " #hess - Cumulative number of times the Hessian was applied" << std::endl;
257  os << " #prox - Cumulative number of times the projection was computed" << std::endl;
258  os << " ls_#fval - Number of the times the objective function was evaluated during the line search" << std::endl;
259  os << " sp_iter - Number iterations to compute quasi-Newton step" << std::endl;
260  os << std::string(114,'-') << std::endl;
261  }
262 
263  os << " ";
264  os << std::setw(6) << std::left << "iter";
265  os << std::setw(15) << std::left << "value";
266  os << std::setw(15) << std::left << "gnorm";
267  os << std::setw(15) << std::left << "snorm";
268  os << std::setw(15) << std::left << "alpha";
269  os << std::setw(10) << std::left << "#sval";
270  os << std::setw(10) << std::left << "#nval";
271  os << std::setw(10) << std::left << "#grad";
272  os << std::setw(10) << std::left << "#hess";
273  os << std::setw(10) << std::left << "#prox";
274  os << std::setw(10) << std::left << "#ls_fval";
275  os << std::setw(10) << std::left << "sp_iter";
276  os << std::endl;
277  os.flags(osFlags);
278 }
279 
280 template<typename Real>
281 void InexactNewtonAlgorithm<Real>::writeName( std::ostream& os ) const {
282  std::ios_base::fmtflags osFlags(os.flags());
283  os << std::endl << "Line-Search Inexact Proximal Newton (Type P)" << std::endl;
284  os.flags(osFlags);
285 }
286 
287 template<typename Real>
288 void InexactNewtonAlgorithm<Real>::writeOutput( std::ostream& os, bool write_header ) const {
289  std::ios_base::fmtflags osFlags(os.flags());
290  os << std::scientific << std::setprecision(6);
291  if ( state_->iter == 0 ) writeName(os);
292  if ( write_header ) writeHeader(os);
293  if ( state_->iter == 0 ) {
294  os << " ";
295  os << std::setw(6) << std::left << state_->iter;
296  os << std::setw(15) << std::left << state_->value;
297  os << std::setw(15) << std::left << state_->gnorm;
298  os << std::setw(15) << std::left << "---";
299  os << std::setw(15) << std::left << "---";
300  os << std::setw(10) << std::left << state_->nsval;
301  os << std::setw(10) << std::left << state_->nnval;
302  os << std::setw(10) << std::left << state_->ngrad;
303  os << std::setw(10) << std::left << nhess_;
304  os << std::setw(10) << std::left << state_->nprox;
305  os << std::setw(10) << std::left << "---";
306  os << std::setw(10) << std::left << "---";
307  os << std::endl;
308  }
309  else {
310  os << " ";
311  os << std::setw(6) << std::left << state_->iter;
312  os << std::setw(15) << std::left << state_->value;
313  os << std::setw(15) << std::left << state_->gnorm;
314  os << std::setw(15) << std::left << state_->snorm;
315  os << std::setw(15) << std::left << state_->searchSize;
316  os << std::setw(10) << std::left << state_->nsval;
317  os << std::setw(10) << std::left << state_->nnval;
318  os << std::setw(10) << std::left << state_->ngrad;
319  os << std::setw(10) << std::left << nhess_;
320  os << std::setw(10) << std::left << state_->nprox;
321  os << std::setw(10) << std::left << ls_nfval_;
322  os << std::setw(10) << std::left << spgIter_;
323  os << std::endl;
324  }
325  os.flags(osFlags);
326 }
327 
328 } // namespace TypeP
329 } // namespace ROL
330 
331 #endif
Provides the interface to evaluate objective functions.
void writeOutput(std::ostream &os, bool write_header=false) const override
Print iterate status.
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
int maxit_
Maximum number of line search steps (default: 20)
virtual Real value(const Vector< Real > &x, Real &tol)=0
Compute value.
virtual void prox(Vector< Real > &Pv, const Vector< Real > &v, Real t, Real &tol)
Real sigma1_
Lower safeguard for quadratic line search (default: 0.1)
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
virtual void update(const Vector< Real > &x, UpdateType type, int iter=-1)
Update objective function.
Real sigma2_
Upper safeguard for quadratic line search (default: 0.9)
Real c1_
Sufficient Decrease Parameter (default: 1e-4)
Real rhodec_
Backtracking rate (default: 0.5)
virtual void gradient(Vector< Real > &g, const Vector< Real > &x, Real &tol)
Compute gradient.
void writeName(std::ostream &os) const override
Print step name.
Provides an interface to check status of optimization algorithms.
const Ptr< CombinedStatusTest< Real > > status_
void initialize(Vector< Real > &x, const Vector< Real > &g, Objective< Real > &sobj, Objective< Real > &nobj, Vector< Real > &dg, Vector< Real > &px, std::ostream &outStream=std::cout)
virtual void set(const Vector &x)
Set where .
Definition: ROL_Vector.hpp:209
void run(Vector< Real > &x, const Vector< Real > &g, Objective< Real > &sobj, Objective< Real > &nobj, std::ostream &outStream=std::cout) override
Run algorithm on unconstrained problems (Type-U). This general interface supports the use of dual opt...
virtual Real norm() const =0
Returns where .
virtual void writeExitStatus(std::ostream &os) const
void initialize(const Vector< Real > &x, const Vector< Real > &g)
void writeHeader(std::ostream &os) const override
Print iterate header.