ROL
ROL_Rosenbrock.hpp
Go to the documentation of this file.
1 // @HEADER
2 // *****************************************************************************
3 // Rapid Optimization Library (ROL) Package
4 //
5 // Copyright 2014 NTESS and the ROL contributors.
6 // SPDX-License-Identifier: BSD-3-Clause
7 // *****************************************************************************
8 // @HEADER
9 
15 // Whether or not to use the exact Hessian-times-a-vector
16 #ifndef USE_HESSVEC
17 #define USE_HESSVEC 1
18 #endif
19 
20 #ifndef ROL_ROSENBROCK_HPP
21 #define ROL_ROSENBROCK_HPP
22 
23 #include "ROL_StdVector.hpp"
24 #include "ROL_TestProblem.hpp"
25 
26 namespace ROL {
27 namespace ZOO {
28 
31 template< class Real, class XPrim=StdVector<Real>, class XDual=StdVector<Real> >
32 class Objective_Rosenbrock : public Objective<Real> {
33 
34  typedef std::vector<Real> vector;
35  typedef Vector<Real> V;
36 
37  typedef typename vector::size_type uint;
38 
39 private:
40  Real alpha_;
41 
42  Real const1_;
43  Real const2_;
44 
45  template<class VectorType>
46  ROL::Ptr<const vector> getVector( const V& x ) {
47  return dynamic_cast<const VectorType&>((x)).getVector();
48  }
49 
50  template<class VectorType>
51  ROL::Ptr<vector> getVector( V& x ) {
52  return dynamic_cast<VectorType&>(x).getVector();
53  }
54 
55 public:
56  Objective_Rosenbrock(Real alpha = 100.0) : alpha_(alpha), const1_(100.0), const2_(20.0) {}
57 
58  Real value( const Vector<Real> &x, Real &tol ) {
59 
60 
61  ROL::Ptr<const vector> xp = getVector<XPrim>(x);
62 
63  uint n = xp->size();
64  Real val = 0;
65  for( uint i=0; i<n/2; i++ ) {
66  val += alpha_ * pow(pow((*xp)[2*i],2) - (*xp)[2*i+1], 2);
67  val += pow((*xp)[2*i] - 1.0, 2);
68  }
69 
71  //Real error = tol*(2.0*((Real)rand())/((Real)RAND_MAX)-1.0);
72  //val += this->const1_*error;
73 
74  return val;
75  }
76 
77  void gradient( Vector<Real> &g, const Vector<Real> &x, Real &tol ) {
78 
79 
80  ROL::Ptr<const vector> xp = getVector<XPrim>(x);
81  ROL::Ptr<vector> gp = getVector<XDual>(g);
82 
83  uint n = xp->size();
84  for( uint i=0; i<n/2; i++ ) {
85  (*gp)[2*i] = 4.0*alpha_*(pow((*xp)[2*i],2) - (*xp)[2*i+1])*(*xp)[2*i] + 2.0*((*xp)[2*i]-1.0);
86  (*gp)[2*i+1] = -2.0*alpha_*(pow((*xp)[2*i],2) - (*xp)[2*i+1]);
87 
89  //Real error0 = tol*(2.0*((Real)rand())/((Real)RAND_MAX)-1.0);
90  //Real error1 = tol*(2.0*((Real)rand())/((Real)RAND_MAX)-1.0);
91  //(*gp)[2*i] += this->const2_*error0/std::sqrt(n);
92  //(*gp)[2*i+1] += this->const2_*error1/std::sqrt(n);
93  }
94  }
95 #if USE_HESSVEC
96  void hessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &x, Real &tol ) {
97 
98 
99  ROL::Ptr<const vector> xp = getVector<XPrim>(x);
100  ROL::Ptr<const vector> vp = getVector<XPrim>(v);
101  ROL::Ptr<vector> hvp = getVector<XDual>(hv);
102 
103  uint n = xp->size();
104  for( uint i=0; i<n/2; i++ ) {
105  Real h11 = 4.0*alpha_*(3.0*pow((*xp)[2*i],2)-(*xp)[2*i+1]) + 2.0;
106  Real h12 = -4.0*alpha_*(*xp)[2*i];
107  Real h22 = 2.0*alpha_;
108 
109  (*hvp)[2*i] = h11*(*vp)[2*i] + h12*(*vp)[2*i+1];
110  (*hvp)[2*i+1] = h12*(*vp)[2*i] + h22*(*vp)[2*i+1];
111  }
112  }
113 #endif
114  void invHessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &x, Real &tol ) {
115 
116 
117 
118  ROL::Ptr<const vector> xp = getVector<XPrim>(x);
119  ROL::Ptr<const vector> vp = getVector<XDual>(v);
120  ROL::Ptr<vector> hvp = getVector<XPrim>(hv);
121 
122  uint n = xp->size();
123  for( uint i=0; i<n/2; i++ ) {
124  Real h11 = 4.0*alpha_*(3.0*pow((*xp)[2*i],2)-(*xp)[2*i+1]) + 2.0;
125  Real h12 = -4.0*alpha_*(*xp)[2*i];
126  Real h22 = 2.0*alpha_;
127 
128  (*hvp)[2*i] = (1.0/(h11*h22-h12*h12))*( h22*(*vp)[2*i] - h12*(*vp)[2*i+1]);
129  (*hvp)[2*i+1] = (1.0/(h11*h22-h12*h12))*(-h12*(*vp)[2*i] + h11*(*vp)[2*i+1]);
130  }
131  }
132 };
133 
134 template<class Real>
135 class getRosenbrock : public TestProblem<Real> {
136 public:
137  getRosenbrock(void) {}
138 
139  Ptr<Objective<Real>> getObjective(void) const {
140  // Instantiate Objective Function
141  return ROL::makePtr<Objective_Rosenbrock<Real>>();
142  }
143 
144  Ptr<Vector<Real>> getInitialGuess(void) const {
145  // Problem dimension
146  int n = 100;
147  // Get Initial Guess
148  ROL::Ptr<std::vector<Real> > x0p = ROL::makePtr<std::vector<Real>>(n,0.0);
149  for ( int i = 0; i < n/2; i++ ) {
150  (*x0p)[2*i] = -1.2;
151  (*x0p)[2*i+1] = 1.0;
152  }
153  return ROL::makePtr<StdVector<Real>>(x0p);
154  }
155 
156  Ptr<Vector<Real>> getSolution(const int i = 0) const {
157  // Problem dimension
158  int n = 100;
159  // Get Solution
160  ROL::Ptr<std::vector<Real> > xp = ROL::makePtr<std::vector<Real>>(n,0.0);
161  for ( int i = 0; i < n; i++ ) {
162  (*xp)[i] = 1.0;
163  }
164  return ROL::makePtr<StdVector<Real>>(xp);
165  }
166 };
167 
168 }// End ZOO Namespace
169 }// End ROL Namespace
170 
171 #endif
Provides the interface to evaluate objective functions.
typename PV< Real >::size_type size_type
Ptr< Vector< Real > > getSolution(const int i=0) const
Rosenbrock&#39;s function.
ROL::Ptr< const vector > getVector(const V &x)
virtual void hessVec(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply Hessian approximation to vector.
void invHessVec(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply inverse Hessian approximation to vector.
ROL::Ptr< vector > getVector(V &x)
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:46
void gradient(Vector< Real > &g, const Vector< Real > &x, Real &tol)
Compute gradient.
Ptr< Objective< Real > > getObjective(void) const
Real value(const Vector< Real > &x, Real &tol)
Compute value.
Contains definitions of test objective functions.
Objective_Rosenbrock(Real alpha=100.0)
Ptr< Vector< Real > > getInitialGuess(void) const