ROL
ROL_MINRES.hpp
Go to the documentation of this file.
1 // @HEADER
2 // *****************************************************************************
3 // Rapid Optimization Library (ROL) Package
4 //
5 // Copyright 2014 NTESS and the ROL contributors.
6 // SPDX-License-Identifier: BSD-3-Clause
7 // *****************************************************************************
8 // @HEADER
9 
10 #pragma once
11 #ifndef ROL_MINRES_HPP
12 #define ROL_MINRES_HPP
13 
14 #include <array>
15 #include "ROL_Krylov.hpp"
16 #include "ROL_VectorClone.hpp"
17 
18 namespace ROL {
19 
26 namespace details {
27 
28 template<typename Real>
29 class MINRES : public Krylov<Real> {
30 
31  using V = Vector<Real>;
33 
34 private:
35 
36  // Givens rotation matrix elements
37  Real resnorm_;
38  int maxiter_;
40  std::array<Real,4> H_;
41  std::array<Real,2> rhs_;
42 
44 
45  void givens( Real& c, Real& s, Real& r, Real a, Real b ) const {
46 
47  Real zero(0), one(1);
48 
49  if( b == zero ) {
50  c = ( a >= zero ? one : -one );
51  s = zero;
52  r = std::abs(a);
53  }
54  else if( a == zero ) {
55  c = zero;
56  s = ( b >= zero ? one : -one );
57  r = std::abs(b);
58  }
59  else if( std::abs(a) > std::abs(b) ) {
60  auto t = b/a;
61  auto u = std::copysign(std::sqrt(one+t*t),a);
62  c = one/u;
63  s = c*t;
64  r = a*u;
65  }
66  else {
67  auto t = a/b;
68  auto u = std::copysign(std::sqrt(one+t*t),b);
69  s = 1/u;
70  c = s*t;
71  r = b*u;
72  }
73  } // givens()
74 
75 public:
76 
77  MINRES( Real absTol = 1.e-4, Real relTol = 1.e-2, unsigned maxit = 100, bool useInexact = false) :
78  Krylov<Real>(absTol,relTol,maxit), useInexact_(useInexact),
79  clones_("v_prev","v_curr","v_next","w_prev","w_curr","w_next") { }
80 
81  // Note: Preconditioner is not implemented
82  virtual Real run( V &x, OP &A, const V &b, OP &M, int &iter, int &flag ) override {
83 
84  auto v_prev = clones_( x, "v_prev" ); v_prev->zero();
85  auto v_curr = clones_( x, "v_curr" ); v_curr->set(b);
86  auto v_next = clones_( x, "v_next" ); v_next->zero();
87  auto w_prev = clones_( x, "w_prev" ); w_prev->zero();
88  auto w_curr = clones_( x, "w_curr" ); w_curr->zero();
89  auto w_next = clones_( x, "w_next" ); w_next->zero();
90 
91  Real c_prev{0}, s_prev{0}, c_curr{0}, s_curr{0}, c_next{0}, s_next{0};
92 
93  resnorm_ = v_curr->norm();
95  Real itol = std::sqrt(ROL_EPSILON<Real>());
96 
97  for( auto &e: H_ ) e = 0;
98 
99  rhs_[0] = resnorm_; rhs_[1] = 0;
100 
101  v_curr->scale(1.0/resnorm_);
102 
103  for( iter=0; iter < (int)Krylov<Real>::getMaximumIteration(); iter++) {
104  if ( useInexact_ ) {
105  itol = rtol/((Real)Krylov<Real>::getMaximumIteration() * resnorm_);
106  }
107 
108  if( resnorm_ < rtol ) break;
109 
110  A.apply( *v_next, *v_curr, itol );
111 
112  if( iter>0 ) v_next->axpy(-H_[1],*v_prev);
113 
114  H_[2] = v_next->dot(*v_curr);
115 
116  v_next->axpy(-H_[2],*v_curr);
117 
118  H_[3] = v_next->norm();
119 
120  v_next->scale(1.0/H_[3]);
121 
122  // Rotation on H_[0] and H_[1].
123  if( iter>1 ) {
124  H_[0] = s_prev*H_[1];
125  H_[1] *= c_prev;
126  }
127 
128  // Rotation on H_[1] and H_[2]
129  if( iter>0 ) {
130  auto tmp = c_curr*H_[2]-s_curr*H_[1];
131  H_[1] = c_curr*H_[1] + s_curr*H_[2];
132  H_[2] = tmp;
133  }
134 
135  // Form rotation coefficients
136  givens( c_next, s_next, H_[2], H_[2], H_[3] );
137  rhs_[1] = -s_next*rhs_[0];
138  rhs_[0] *= c_next;
139 
140  w_next->set( *v_curr );
141 
142  if( iter>0 ) w_next->axpy( -H_[1], *w_curr );
143  if( iter>1 ) w_next->axpy( -H_[0], *w_prev );
144 
145  w_next->scale(1.0/H_[2]);
146 
147  x.axpy( rhs_[0], *w_next );
148 
149  v_prev->set( *v_curr );
150  v_curr->set( *v_next );
151  w_prev->set( *w_curr );
152  w_curr->set( *w_next );
153 
154  c_prev = c_curr;
155  c_curr = c_next;
156  s_prev = s_curr;
157  s_curr = s_next;
158 
159  rhs_[0] = rhs_[1];
160 
161  H_[1] = H_[3];
162 
163  resnorm_ = std::abs( rhs_[1] );
164 
165  } // for (iter)
166 
167  if ( iter == (int)Krylov<Real>::getMaximumIteration() ) flag = 1;
168  else iter++;
169 
170  return resnorm_;
171  } // run()
172 
173 }; // class MINRES
174 
175 } // namespace details
176 
177 
178 using details::MINRES;
179 
180 
181 } // namespace ROL
182 
183 
184 #endif // ROL_MINRES_HPP
185 
virtual Real run(V &x, OP &A, const V &b, OP &M, int &iter, int &flag) override
Definition: ROL_MINRES.hpp:82
std::array< Real, 4 > H_
Definition: ROL_MINRES.hpp:40
virtual void axpy(const Real alpha, const Vector &x)
Compute where .
Definition: ROL_Vector.hpp:119
virtual void apply(Vector< Real > &Hv, const Vector< Real > &v, Real &tol) const =0
Apply linear operator.
std::array< Real, 2 > rhs_
Definition: ROL_MINRES.hpp:41
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:46
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
Provides definitions for Krylov solvers.
Definition: ROL_Krylov.hpp:24
Provides the interface to apply a linear operator.
void givens(Real &c, Real &s, Real &r, Real a, Real b) const
Definition: ROL_MINRES.hpp:45
VectorCloneMap< Real > clones_
Definition: ROL_MINRES.hpp:43
Implements the MINRES algorithm for solving symmetric indefinite systems.
MINRES(Real absTol=1.e-4, Real relTol=1.e-2, unsigned maxit=100, bool useInexact=false)
Definition: ROL_MINRES.hpp:77