|
ConstrainedOptPack: C++ Tools for Constrained (and Unconstrained) Optimization
Version of the Day
|
Concrete implementation class for a matrix vertically concatonated with an identity matrix. More...
#include <ConstrainedOptPack_MatrixIdentConcatStd.hpp>

Public types | |
| enum | ETopBottom |
| typedef Teuchos::RCP< const MatrixOp > | D_ptr_t |
Constructors/initializers. | |
| MatrixIdentConcatStd () | |
| Constructs to uninitialized. More... | |
| virtual void | initialize (const VectorSpace::space_ptr_t &space_cols, const VectorSpace::space_ptr_t &space_rows, ETopBottom top_or_bottom, value_type alpha, const D_ptr_t &D_ptr, BLAS_Cpp::Transp D_trans) |
| Setup with a matrix object. More... | |
| virtual void | set_uninitialized () |
| Set the matrix to uninitialized. More... | |
| virtual const D_ptr_t & | D_ptr () const |
Return the smart reference counted point to the D matrix. More... | |
Overridden form MatrixIdentConcat | |
| Range1D | D_rng () const |
| Range1D | I_rng () const |
| value_type | alpha () const |
| const MatrixOp & | D () const |
| BLAS_Cpp::Transp | D_trans () const |
Overridden from MatrixOp | |
| const VectorSpace & | space_cols () const |
| const VectorSpace & | space_rows () const |
| MatrixOp & | operator= (const MatrixOp &m) |
| The default just performs a shallow copy and just copies the underlying smart reference counted pointer. If other behavior is desired then this method must be overridden. More... | |
Concrete implementation class for a matrix vertically concatonated with an identity matrix.
Represents an interface for a matrix that represents:
M = [ alpha*op(D) ] (TOP)
[ I ]
or
M = [ I ]
[ alpha*op(D) ] (BOTTOM)
This subclass allows a client to set the representation matrix D.
Definition at line 67 of file ConstrainedOptPack_MatrixIdentConcatStd.hpp.
| typedef Teuchos::RCP<const MatrixOp> ConstrainedOptPack::MatrixIdentConcatStd::D_ptr_t |
Definition at line 75 of file ConstrainedOptPack_MatrixIdentConcatStd.hpp.
Definition at line 73 of file ConstrainedOptPack_MatrixIdentConcatStd.hpp.
| ConstrainedOptPack::MatrixIdentConcatStd::MatrixIdentConcatStd | ( | ) |
Constructs to uninitialized.
Definition at line 51 of file ConstrainedOptPack_MatrixIdentConcatStd.cpp.
|
virtual |
Setup with a matrix object.
| top_or_bottom | [in] If TOP then M = [ alpha*op(D); I ] and if BOTTOM then M = [ I; alpha*op(D) ] |
| alpha | [in] Scalar that multiplies op(D) |
| D_ptr | [in] Smart pointer to a matrix object that represents D. The matrix object pointed to must not be altered until this object is no longer in use or this->set_uninitialized() has been called. |
| D_trans | [in] Determines if op(D) = D (no_trans#) or op(D) = D' (trans). |
Preconditions:
D.get() != NULL (throw std::invalid_argument) space_cols->dim() == rows(op(D)) + cols(op(D)) (throw std::invalid_argument) space_rows->dim() == cols(op(D)) (throw std::invalid_argument) space_cols->sub_space(D_rng)->is_compatible(op(D).space_cols()) (throw std::invalid_argument) See D_rng defined below space_rows->is_compatible(op(D).space_rows()) (throw std::invalid_argument) Postconditions:
this->D_ptr().get() == D_ptr.get() &this->D() == this->D_ptr().get() this->D_trans() == D_trans this->alpha() == alpha this->rows() == rows(op(D)) + cols(op(D)) this->cols() == cols(op(D)) &this->space_cols() == space_cols.get() &this->space_rows() == space_rows.get() top_or_bottom == TOP] this->D_rng() = [1,rows(op(D))] top_or_bottom == TOP] this->I_rng() = [rows(op(D))+1,rows(op(D))+cols(op(D))] top_or_bottom == BOTTOM] this->D_rng() = [cols(op(D))+1,rows(op(D))+cols(op(D))] top_or_bottom == BOTTOM] this->I_rng() = [1,cols(op(D))] Definition at line 56 of file ConstrainedOptPack_MatrixIdentConcatStd.cpp.
|
virtual |
Set the matrix to uninitialized.
Postconditions:
this->space_cols() throws an exception this->space_rows() throws an exception this->D_ptr().get() == NULL &this->D() throws an exception this->D_trans() == no_trans this->alpha() == 0.0 this->rows() == 0 this->cols() == 0 top_or_bottom == TOP] this->D_rng() = [1,rows(op(D))] top_or_bottom == TOP] this->I_rng() = [rows(op(D))+1,rows(op(D))+cols(op(D))] top_or_bottom == BOTTOM] this->D_rng() = [cols(op(D))+1,rows(op(D))+cols(op(D))] top_or_bottom == BOTTOM] this->I_rng() = [1,cols(op(D))] Definition at line 94 of file ConstrainedOptPack_MatrixIdentConcatStd.cpp.
|
virtual |
Return the smart reference counted point to the D matrix.
If the matrix object D is owned exclusively by this matrix object then this->D_ptr().count() == 1 on return.
Definition at line 106 of file ConstrainedOptPack_MatrixIdentConcatStd.cpp.
|
virtual |
Implements ConstrainedOptPack::MatrixIdentConcat.
|
virtual |
Implements ConstrainedOptPack::MatrixIdentConcat.
|
virtual |
Implements ConstrainedOptPack::MatrixIdentConcat.
Definition at line 123 of file ConstrainedOptPack_MatrixIdentConcatStd.cpp.
|
virtual |
Implements ConstrainedOptPack::MatrixIdentConcat.
|
virtual |
Implements ConstrainedOptPack::MatrixIdentConcat.
Definition at line 133 of file ConstrainedOptPack_MatrixIdentConcatStd.cpp.
|
virtual |
Implements AbstractLinAlgPack::MatrixBase.
|
virtual |
Implements AbstractLinAlgPack::MatrixBase.
| MatrixOp & ConstrainedOptPack::MatrixIdentConcatStd::operator= | ( | const MatrixOp & | m | ) |
The default just performs a shallow copy and just copies the underlying smart reference counted pointer. If other behavior is desired then this method must be overridden.
Definition at line 150 of file ConstrainedOptPack_MatrixIdentConcatStd.cpp.
1.8.6