Kokkos Core Kernels Package  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
Kokkos_Tuners.hpp
1 //@HEADER
2 // ************************************************************************
3 //
4 // Kokkos v. 4.0
5 // Copyright (2022) National Technology & Engineering
6 // Solutions of Sandia, LLC (NTESS).
7 //
8 // Under the terms of Contract DE-NA0003525 with NTESS,
9 // the U.S. Government retains certain rights in this software.
10 //
11 // Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions.
12 // See https://kokkos.org/LICENSE for license information.
13 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
14 //
15 //@HEADER
16 
17 #ifndef KOKKOS_IMPL_PUBLIC_INCLUDE
18 #include <Kokkos_Macros.hpp>
19 static_assert(false,
20  "Including non-public Kokkos header files is not allowed.");
21 #endif
22 #ifndef KOKKOS_KOKKOS_TUNERS_HPP
23 #define KOKKOS_KOKKOS_TUNERS_HPP
24 
25 #include <Kokkos_Macros.hpp>
26 #include <Kokkos_Core_fwd.hpp>
27 #include <Kokkos_ExecPolicy.hpp>
28 #include <KokkosExp_MDRangePolicy.hpp>
29 #include <impl/Kokkos_Profiling_Interface.hpp>
30 
31 #include <array>
32 #include <utility>
33 #include <tuple>
34 #include <string>
35 #include <vector>
36 #include <map>
37 #include <cassert>
38 
39 namespace Kokkos {
40 namespace Tools {
41 
42 namespace Experimental {
43 
44 // forward declarations
45 SetOrRange make_candidate_set(size_t size, int64_t* data);
46 bool have_tuning_tool();
47 size_t declare_output_type(const std::string&,
48  Kokkos::Tools::Experimental::VariableInfo);
49 void request_output_values(size_t, size_t,
50  Kokkos::Tools::Experimental::VariableValue*);
51 VariableValue make_variable_value(size_t, int64_t);
52 VariableValue make_variable_value(size_t, double);
53 SetOrRange make_candidate_range(double lower, double upper, double step,
54  bool openLower, bool openUpper);
55 SetOrRange make_candidate_range(int64_t lower, int64_t upper, int64_t step,
56  bool openLower, bool openUpper);
57 size_t get_new_context_id();
58 void begin_context(size_t context_id);
59 void end_context(size_t context_id);
60 namespace Impl {
61 
67 template <typename ValueType, typename ContainedType>
68 struct ValueHierarchyNode;
69 
70 template <typename ValueType, typename ContainedType>
71 struct ValueHierarchyNode {
72  std::vector<ValueType> root_values;
73  std::vector<ContainedType> sub_values;
74  void add_root_value(const ValueType& in) noexcept {
75  root_values.push_back(in);
76  }
77  void add_sub_container(const ContainedType& in) { sub_values.push_back(in); }
78  const ValueType& get_root_value(const size_t index) const {
79  return root_values[index];
80  }
81  const ContainedType& get_sub_value(const size_t index) const {
82  return sub_values[index];
83  }
84 };
85 
86 template <typename ValueType>
87 struct ValueHierarchyNode<ValueType, void> {
88  std::vector<ValueType> root_values;
89  explicit ValueHierarchyNode(std::vector<ValueType> rv)
90  : root_values(std::move(rv)) {}
91  void add_root_value(const ValueType& in) noexcept {
92  root_values.push_back(in);
93  }
94  const ValueType& get_root_value(const size_t index) const {
95  return root_values[index];
96  }
97 };
98 
104 template <class NestedMap>
105 struct MapTypeConverter;
106 
107 // Vectors are our lowest-level, no nested values
108 template <class T>
109 struct MapTypeConverter<std::vector<T>> {
110  using type = ValueHierarchyNode<T, void>;
111 };
112 
113 // Maps contain both the "root" types and sub-vectors
114 template <class K, class V>
115 struct MapTypeConverter<std::map<K, V>> {
116  using type = ValueHierarchyNode<K, typename MapTypeConverter<V>::type>;
117 };
118 
124 template <class NestedMap>
125 struct ValueHierarchyConstructor;
126 
127 // Vectors are our lowest-level, no nested values. Just fill in the fundamental
128 // values
129 template <class T>
130 struct ValueHierarchyConstructor<std::vector<T>> {
131  using return_type = typename MapTypeConverter<std::vector<T>>::type;
132  static return_type build(const std::vector<T>& in) { return return_type{in}; }
133 };
134 
135 // For maps, we need to fill in the fundamental values, and construct child
136 // nodes
137 template <class K, class V>
138 struct ValueHierarchyConstructor<std::map<K, V>> {
139  using return_type = typename MapTypeConverter<std::map<K, V>>::type;
140  static return_type build(const std::map<K, V>& in) {
141  return_type node_to_build;
142  for (auto& entry : in) {
143  node_to_build.add_root_value(entry.first);
144  node_to_build.add_sub_container(
145  ValueHierarchyConstructor<V>::build(entry.second));
146  }
147  return node_to_build;
148  }
149 };
150 
159 template <class InspectForDepth>
160 struct get_space_dimensionality;
161 
162 // The dimensionality of a vector is 1
163 template <class T>
164 struct get_space_dimensionality<std::vector<T>> {
165  static constexpr int value = 1;
166 };
167 
168 // The dimensionality of a map is 1 (the map) plus the dimensionality
169 // of the map's value type
170 template <class K, class V>
171 struct get_space_dimensionality<std::map<K, V>> {
172  static constexpr int value = 1 + get_space_dimensionality<V>::value;
173 };
174 
175 template <class T, int N>
176 struct n_dimensional_sparse_structure;
177 
178 template <class T>
179 struct n_dimensional_sparse_structure<T, 1> {
180  using type = std::vector<T>;
181 };
182 
183 template <class T, int N>
184 struct n_dimensional_sparse_structure {
185  using type =
186  std::map<T, typename n_dimensional_sparse_structure<T, N - 1>::type>;
187 };
188 
195 // First, a helper to get the value in one dimension
196 template <class Container>
197 struct DimensionValueExtractor;
198 
199 // At any given level, just return your value at that level
200 template <class RootType, class Subtype>
201 struct DimensionValueExtractor<ValueHierarchyNode<RootType, Subtype>> {
202  static RootType get(const ValueHierarchyNode<RootType, Subtype>& dimension,
203  double fraction_to_traverse) {
204  size_t index = dimension.root_values.size() * fraction_to_traverse;
205  return dimension.get_root_value(index);
206  }
207 };
208 
214 // At the bottom level, we have one double and a base-level ValueHierarchyNode
215 
216 template <class HierarchyNode, class... InterpolationIndices>
217 struct GetMultidimensionalPoint;
218 
219 template <class ValueType>
220 struct GetMultidimensionalPoint<ValueHierarchyNode<ValueType, void>, double> {
221  using node_type = ValueHierarchyNode<ValueType, void>;
222  using return_type = std::tuple<ValueType>;
223  static return_type build(const node_type& in, double index) {
224  return std::make_tuple(DimensionValueExtractor<node_type>::get(in, index));
225  }
226 };
227 
228 // At levels above the bottom, we tuple_cat the result of our child on the end
229 // of our own tuple
230 template <class ValueType, class Subtype, class... Indices>
231 struct GetMultidimensionalPoint<ValueHierarchyNode<ValueType, Subtype>, double,
232  Indices...> {
233  using node_type = ValueHierarchyNode<ValueType, Subtype>;
234  using sub_tuple =
235  typename GetMultidimensionalPoint<Subtype, Indices...>::return_type;
236  using return_type = decltype(std::tuple_cat(
237  std::declval<std::tuple<ValueType>>(), std::declval<sub_tuple>()));
238  static return_type build(const node_type& in, double fraction_to_traverse,
239  Indices... indices) {
240  size_t index = in.sub_values.size() * fraction_to_traverse;
241  auto dimension_value = std::make_tuple(
242  DimensionValueExtractor<node_type>::get(in, fraction_to_traverse));
243  return std::tuple_cat(dimension_value,
244  GetMultidimensionalPoint<Subtype, Indices...>::build(
245  in.get_sub_value(index), indices...));
246  }
247 };
248 
249 template <typename PointType, class ArrayType, size_t... Is>
250 auto get_point_helper(const PointType& in, const ArrayType& indices,
251  std::index_sequence<Is...>) {
252  using helper = GetMultidimensionalPoint<
253  PointType,
254  decltype(std::get<Is>(std::declval<ArrayType>()).value.double_value)...>;
255  return helper::build(in, std::get<Is>(indices).value.double_value...);
256 }
257 
258 template <typename PointType, typename ArrayType>
259 struct GetPoint;
260 
261 template <typename PointType, size_t ArraySize>
262 struct GetPoint<
263  PointType,
264  std::array<Kokkos::Tools::Experimental::VariableValue, ArraySize>> {
265  using index_set_type =
266  std::array<Kokkos::Tools::Experimental::VariableValue, ArraySize>;
267  static auto build(const PointType& in, const index_set_type& indices) {
268  return get_point_helper(in, indices, std::make_index_sequence<ArraySize>{});
269  }
270 };
271 
272 template <typename PointType, typename ArrayType>
273 auto get_point(const PointType& point, const ArrayType& indices) {
274  return GetPoint<PointType, ArrayType>::build(point, indices);
275 }
276 
277 } // namespace Impl
278 
279 template <template <class...> class Container, size_t MaxDimensionSize = 100,
280  class... TemplateArguments>
281 class MultidimensionalSparseTuningProblem {
282  public:
283  using ProblemSpaceInput = Container<TemplateArguments...>;
284  static constexpr int space_dimensionality =
285  Impl::get_space_dimensionality<ProblemSpaceInput>::value;
286  static constexpr size_t max_space_dimension_size = MaxDimensionSize;
287  static constexpr double tuning_min = 0.0;
288  static constexpr double tuning_max = 0.999;
289 
290  // Not declared as static constexpr to work around the following compiler bug
291  // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96862
292  // where a floating-point expression cannot be constexpr under -frounding-math
293  double tuning_step = tuning_max / max_space_dimension_size;
294 
295  using StoredProblemSpace =
296  typename Impl::MapTypeConverter<ProblemSpaceInput>::type;
297  using HierarchyConstructor =
298  typename Impl::ValueHierarchyConstructor<Container<TemplateArguments...>>;
299 
300  using ValueArray = std::array<Kokkos::Tools::Experimental::VariableValue,
301  space_dimensionality>;
302  template <class Key, class Value>
303  using extended_map = std::map<Key, Value>;
304  template <typename Key>
305  using extended_problem =
306  MultidimensionalSparseTuningProblem<extended_map, MaxDimensionSize, Key,
307  ProblemSpaceInput>;
308  template <typename Key, typename Value>
309  using ExtendedProblemSpace =
310  typename Impl::MapTypeConverter<extended_map<Key, Value>>::type;
311 
312  template <typename Key>
313  auto extend(const std::string& axis_name,
314  const std::vector<Key>& new_tuning_axis) const
315  -> extended_problem<Key> {
316  ExtendedProblemSpace<Key, ProblemSpaceInput> extended_space;
317  for (auto& key : new_tuning_axis) {
318  extended_space.add_root_value(key);
319  extended_space.add_sub_container(m_space);
320  }
321  std::vector<std::string> extended_names;
322  extended_names.reserve(m_variable_names.size() + 1);
323  extended_names.push_back(axis_name);
324  extended_names.insert(extended_names.end(), m_variable_names.begin(),
325  m_variable_names.end());
326  return extended_problem<Key>(extended_space, extended_names);
327  }
328 
329  private:
330  StoredProblemSpace m_space;
331  std::array<size_t, space_dimensionality> variable_ids;
332  std::vector<std::string> m_variable_names;
333  size_t context;
334 
335  public:
336  MultidimensionalSparseTuningProblem() = default;
337 
338  MultidimensionalSparseTuningProblem(StoredProblemSpace space,
339  const std::vector<std::string>& names)
340  : m_space(std::move(space)), m_variable_names(names) {
341  assert(names.size() == space_dimensionality);
342  for (unsigned long x = 0; x < names.size(); ++x) {
343  VariableInfo info;
344  info.type = Kokkos::Tools::Experimental::ValueType::kokkos_value_double;
345  info.category = Kokkos::Tools::Experimental::StatisticalCategory::
346  kokkos_value_interval;
347  info.valueQuantity =
348  Kokkos::Tools::Experimental::CandidateValueType::kokkos_value_range;
349  info.candidates = Kokkos::Tools::Experimental::make_candidate_range(
350  tuning_min, tuning_max, tuning_step, true, true);
351  variable_ids[x] = declare_output_type(names[x], info);
352  }
353  }
354 
355  MultidimensionalSparseTuningProblem(ProblemSpaceInput space,
356  const std::vector<std::string>& names)
357  : MultidimensionalSparseTuningProblem(HierarchyConstructor::build(space),
358  names) {}
359 
360  template <typename... Coordinates>
361  auto get_point(Coordinates... coordinates) {
362  using ArrayType = std::array<Kokkos::Tools::Experimental::VariableValue,
363  sizeof...(coordinates)>;
364  return Impl::get_point(
365  m_space, ArrayType({Kokkos::Tools::Experimental::make_variable_value(
366  0, static_cast<double>(coordinates))...}));
367  }
368 
369  auto begin() {
370  context = Kokkos::Tools::Experimental::get_new_context_id();
371  ValueArray values;
372  for (int x = 0; x < space_dimensionality; ++x) {
373  values[x] = Kokkos::Tools::Experimental::make_variable_value(
374  variable_ids[x], 0.0);
375  }
376  begin_context(context);
377  request_output_values(context, space_dimensionality, values.data());
378  return Impl::get_point(m_space, values);
379  }
380 
381  auto end() { end_context(context); }
382 };
383 
384 template <typename Tuner>
385 struct ExtendableTunerMixin {
386  template <typename Key>
387  auto combine(const std::string& axis_name,
388  const std::vector<Key>& new_axis) const {
389  const auto& sub_tuner = static_cast<const Tuner*>(this)->get_tuner();
390  return sub_tuner.extend(axis_name, new_axis);
391  }
392 
393  template <typename... Coordinates>
394  auto get_point(Coordinates... coordinates) {
395  const auto& sub_tuner = static_cast<const Tuner*>(this)->get_tuner();
396  return sub_tuner.get_point(coordinates...);
397  }
398 };
399 
400 template <size_t MaxDimensionSize = 100, template <class...> class Container,
401  class... TemplateArguments>
402 auto make_multidimensional_sparse_tuning_problem(
403  const Container<TemplateArguments...>& in, std::vector<std::string> names) {
404  return MultidimensionalSparseTuningProblem<Container, MaxDimensionSize,
405  TemplateArguments...>(in, names);
406 }
407 
408 class TeamSizeTuner : public ExtendableTunerMixin<TeamSizeTuner> {
409  private:
410  using SpaceDescription = std::map<int64_t, std::vector<int64_t>>;
411  using TunerType = decltype(make_multidimensional_sparse_tuning_problem<20>(
412  std::declval<SpaceDescription>(),
413  std::declval<std::vector<std::string>>()));
414  TunerType tuner;
415 
416  public:
417  TeamSizeTuner() = default;
418  TeamSizeTuner& operator=(const TeamSizeTuner& other) = default;
419  TeamSizeTuner(const TeamSizeTuner& other) = default;
420  TeamSizeTuner& operator=(TeamSizeTuner&& other) = default;
421  TeamSizeTuner(TeamSizeTuner&& other) = default;
422  template <typename ViableConfigurationCalculator, typename Functor,
423  typename TagType, typename... Properties>
424  TeamSizeTuner(const std::string& name,
425  const Kokkos::TeamPolicy<Properties...>& policy_in,
426  const Functor& functor, const TagType& tag,
427  ViableConfigurationCalculator calc) {
428  using PolicyType = Kokkos::TeamPolicy<Properties...>;
429  PolicyType policy(policy_in);
430  auto initial_vector_length = policy.impl_vector_length();
431  if (initial_vector_length < 1) {
432  policy.impl_set_vector_length(1);
433  }
459  SpaceDescription space_description;
460 
461  auto max_vector_length = PolicyType::vector_length_max();
462  std::vector<int64_t> allowed_vector_lengths;
463 
464  if (policy.impl_auto_vector_length()) { // case 1 or 2
465  for (int vector_length = max_vector_length; vector_length >= 1;
466  vector_length /= 2) {
467  policy.impl_set_vector_length(vector_length);
480  auto max_team_size = calc.get_max_team_size(policy, functor, tag);
481  if ((policy.impl_auto_team_size()) ||
482  (policy.team_size() <= max_team_size)) {
483  allowed_vector_lengths.push_back(vector_length);
484  }
485  }
486  } else { // case 3, there's only one vector length to care about
487  allowed_vector_lengths.push_back(policy.impl_vector_length());
488  }
489 
490  for (const auto vector_length : allowed_vector_lengths) {
491  std::vector<int64_t> allowed_team_sizes;
492  policy.impl_set_vector_length(vector_length);
493  auto max_team_size = calc.get_max_team_size(policy, functor, tag);
494  if (policy.impl_auto_team_size()) { // case 1 or 3, try all legal team
495  // sizes
496  for (int team_size = max_team_size; team_size >= 1; team_size /= 2) {
497  allowed_team_sizes.push_back(team_size);
498  }
499  } else { // case 2, just try the provided team size
500  allowed_team_sizes.push_back(policy.team_size());
501  }
502  space_description[vector_length] = allowed_team_sizes;
503  }
504  tuner = make_multidimensional_sparse_tuning_problem<20>(
505  space_description, {std::string(name + "_vector_length"),
506  std::string(name + "_team_size")});
507  policy.impl_set_vector_length(initial_vector_length);
508  }
509 
510  template <typename... Properties>
511  auto tune(const Kokkos::TeamPolicy<Properties...>& policy_in) {
512  Kokkos::TeamPolicy<Properties...> policy(policy_in);
513  if (Kokkos::Tools::Experimental::have_tuning_tool()) {
514  auto configuration = tuner.begin();
515  auto team_size = std::get<1>(configuration);
516  auto vector_length = std::get<0>(configuration);
517  if (vector_length > 0) {
518  policy.impl_set_team_size(team_size);
519  policy.impl_set_vector_length(vector_length);
520  }
521  }
522  return policy;
523  }
524  void end() {
525  if (Kokkos::Tools::Experimental::have_tuning_tool()) {
526  tuner.end();
527  }
528  }
529 
530  TunerType get_tuner() const { return tuner; }
531 };
532 namespace Impl {
533 template <class T>
534 struct tuning_type_for;
535 
536 template <>
537 struct tuning_type_for<double> {
538  static constexpr Kokkos::Tools::Experimental::ValueType value =
539  Kokkos::Tools::Experimental::ValueType::kokkos_value_double;
540  static double get(
541  const Kokkos::Tools::Experimental::VariableValue& value_struct) {
542  return value_struct.value.double_value;
543  }
544 };
545 template <>
546 struct tuning_type_for<int64_t> {
547  static constexpr Kokkos::Tools::Experimental::ValueType value =
548  Kokkos::Tools::Experimental::ValueType::kokkos_value_int64;
549  static int64_t get(
550  const Kokkos::Tools::Experimental::VariableValue& value_struct) {
551  return value_struct.value.int_value;
552  }
553 };
554 } // namespace Impl
555 template <class Bound>
556 class SingleDimensionalRangeTuner {
557  size_t id;
558  size_t context;
559  using tuning_util = Impl::tuning_type_for<Bound>;
560 
561  Bound default_value;
562 
563  public:
564  SingleDimensionalRangeTuner() = default;
565  SingleDimensionalRangeTuner(
566  const std::string& name,
567  Kokkos::Tools::Experimental::StatisticalCategory category,
568  Bound default_val, Bound lower, Bound upper, Bound step = (Bound)0) {
569  default_value = default_val;
570  Kokkos::Tools::Experimental::VariableInfo info;
571  info.category = category;
572  info.candidates = make_candidate_range(
573  static_cast<Bound>(lower), static_cast<Bound>(upper),
574  static_cast<Bound>(step), false, false);
575  info.valueQuantity =
576  Kokkos::Tools::Experimental::CandidateValueType::kokkos_value_range;
577  info.type = tuning_util::value;
578  id = Kokkos::Tools::Experimental::declare_output_type(name, info);
579  }
580 
581  Bound begin() {
582  context = Kokkos::Tools::Experimental::get_new_context_id();
583  Kokkos::Tools::Experimental::begin_context(context);
584  auto tuned_value =
585  Kokkos::Tools::Experimental::make_variable_value(id, default_value);
586  Kokkos::Tools::Experimental::request_output_values(context, 1,
587  &tuned_value);
588  return tuning_util::get(tuned_value);
589  }
590 
591  void end() { Kokkos::Tools::Experimental::end_context(context); }
592 
593  template <typename Functor>
594  void with_tuned_value(Functor& func) {
595  func(begin());
596  end();
597  }
598 };
599 
600 class RangePolicyOccupancyTuner {
601  private:
602  using TunerType = SingleDimensionalRangeTuner<int64_t>;
603  TunerType tuner;
604 
605  public:
606  RangePolicyOccupancyTuner() = default;
607  template <typename ViableConfigurationCalculator, typename Functor,
608  typename TagType, typename... Properties>
609  RangePolicyOccupancyTuner(const std::string& name,
611  const Functor&, const TagType&,
612  ViableConfigurationCalculator)
613  : tuner(TunerType(name,
614  Kokkos::Tools::Experimental::StatisticalCategory::
615  kokkos_value_ratio,
616  100, 5, 100, 5)) {}
617 
618  template <typename... Properties>
619  auto tune(const Kokkos::RangePolicy<Properties...>& policy_in) {
620  Kokkos::RangePolicy<Properties...> policy(policy_in);
621  if (Kokkos::Tools::Experimental::have_tuning_tool()) {
622  auto occupancy = tuner.begin();
623  policy.impl_set_desired_occupancy(
624  Kokkos::Experimental::DesiredOccupancy{static_cast<int>(occupancy)});
625  }
626  return policy;
627  }
628  void end() {
629  if (Kokkos::Tools::Experimental::have_tuning_tool()) {
630  tuner.end();
631  }
632  }
633 
634  TunerType get_tuner() const { return tuner; }
635 };
636 
637 namespace Impl {
638 
639 template <typename T>
640 void fill_tile(std::vector<T>& cont, int tile_size) {
641  for (int x = 1; x < tile_size; x *= 2) {
642  cont.push_back(x);
643  }
644 }
645 template <typename T, typename Mapped>
646 void fill_tile(std::map<T, Mapped>& cont, int tile_size) {
647  for (int x = 1; x < tile_size; x *= 2) {
648  fill_tile(cont[x], tile_size / x);
649  }
650 }
651 } // namespace Impl
652 
653 template <int MDRangeRank>
654 struct MDRangeTuner : public ExtendableTunerMixin<MDRangeTuner<MDRangeRank>> {
655  private:
656  static constexpr int rank = MDRangeRank;
657  static constexpr int max_slices = 15;
658  using SpaceDescription =
659  typename Impl::n_dimensional_sparse_structure<int, rank>::type;
660  using TunerType =
661  decltype(make_multidimensional_sparse_tuning_problem<max_slices>(
662  std::declval<SpaceDescription>(),
663  std::declval<std::vector<std::string>>()));
664  TunerType tuner;
665 
666  public:
667  MDRangeTuner() = default;
668  template <typename Functor, typename TagType, typename Calculator,
669  typename... Properties>
670  MDRangeTuner(const std::string& name,
671  const Kokkos::MDRangePolicy<Properties...>& policy,
672  const Functor& functor, const TagType& tag, Calculator calc) {
673  SpaceDescription desc;
674  int max_tile_size =
675  calc.get_mdrange_max_tile_size_product(policy, functor, tag);
676  Impl::fill_tile(desc, max_tile_size);
677  std::vector<std::string> feature_names;
678  for (int x = 0; x < rank; ++x) {
679  feature_names.push_back(name + "_tile_size_" + std::to_string(x));
680  }
681  tuner = make_multidimensional_sparse_tuning_problem<max_slices>(
682  desc, feature_names);
683  }
684  template <typename Policy, typename Tuple, size_t... Indices>
685  void set_policy_tile(Policy& policy, const Tuple& tuple,
686  const std::index_sequence<Indices...>&) {
687  policy.impl_change_tile_size({std::get<Indices>(tuple)...});
688  }
689  template <typename... Properties>
690  auto tune(const Kokkos::MDRangePolicy<Properties...>& policy_in) {
691  Kokkos::MDRangePolicy<Properties...> policy(policy_in);
692  if (Kokkos::Tools::Experimental::have_tuning_tool()) {
693  auto configuration = tuner.begin();
694  set_policy_tile(policy, configuration, std::make_index_sequence<rank>{});
695  }
696  return policy;
697  }
698  void end() {
699  if (Kokkos::Tools::Experimental::have_tuning_tool()) {
700  tuner.end();
701  }
702  }
703 
704  TunerType get_tuner() const { return tuner; }
705 };
706 
707 template <class Choice>
708 struct CategoricalTuner {
709  using choice_list = std::vector<Choice>;
710  choice_list choices;
711  size_t context;
712  size_t tuning_variable_id;
713  CategoricalTuner(std::string name, choice_list m_choices)
714  : choices(m_choices) {
715  std::vector<int64_t> indices;
716  for (typename decltype(choices)::size_type x = 0; x < choices.size(); ++x) {
717  indices.push_back(x);
718  }
719  VariableInfo info;
720  info.category = StatisticalCategory::kokkos_value_categorical;
721  info.valueQuantity = CandidateValueType::kokkos_value_set;
722  info.type = ValueType::kokkos_value_int64;
723  info.candidates = make_candidate_set(indices.size(), indices.data());
724  tuning_variable_id = declare_output_type(name, info);
725  }
726  const Choice& begin() {
727  context = get_new_context_id();
728  begin_context(context);
729  VariableValue value = make_variable_value(tuning_variable_id, int64_t(0));
730  request_output_values(context, 1, &value);
731  return choices[value.value.int_value];
732  }
733  void end() { end_context(context); }
734 };
735 
736 template <typename Choice>
737 auto make_categorical_tuner(std::string name, std::vector<Choice> choices)
738  -> CategoricalTuner<Choice> {
739  return CategoricalTuner<Choice>(name, choices);
740 }
741 
742 } // namespace Experimental
743 } // namespace Tools
744 } // namespace Kokkos
745 
746 #endif
Execution policy for parallel work over a league of teams of threads.