Ifpack2 Templated Preconditioning Package  Version 1.0
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
Public Types | Public Member Functions | Static Public Member Functions | Protected Attributes | List of all members
Ifpack2::RILUK< MatrixType > Class Template Reference

ILU(k) factorization of a given Tpetra::RowMatrix. More...

#include <Ifpack2_RILUK_decl.hpp>

Inheritance diagram for Ifpack2::RILUK< MatrixType >:
Inheritance graph
[legend]

Public Types

typedef MatrixType::scalar_type scalar_type
 The type of the entries of the input MatrixType. More...
 
typedef
MatrixType::local_ordinal_type 
local_ordinal_type
 The type of local indices in the input MatrixType. More...
 
typedef
MatrixType::global_ordinal_type 
global_ordinal_type
 The type of global indices in the input MatrixType. More...
 
typedef MatrixType::node_type node_type
 The Node type used by the input MatrixType. More...
 
typedef Teuchos::ScalarTraits
< scalar_type >::magnitudeType 
magnitude_type
 The type of the magnitude (absolute value) of a matrix entry. More...
 
typedef node_type::device_type device_type
 The Kokkos device type of the input MatrixType. More...
 
typedef node_type::execution_space execution_space
 The Kokkos execution space of the input MatrixType. More...
 
typedef Tpetra::RowMatrix
< scalar_type,
local_ordinal_type,
global_ordinal_type, node_type
row_matrix_type
 Tpetra::RowMatrix specialization used by this class. More...
 
typedef Tpetra::CrsMatrix
< scalar_type,
local_ordinal_type,
global_ordinal_type, node_type
crs_matrix_type
 Tpetra::CrsMatrix specialization used by this class for representing L and U. More...
 
typedef
crs_matrix_type::impl_scalar_type 
impl_scalar_type
 Scalar type stored in Kokkos::Views (CrsMatrix and MultiVector) More...
 
- Public Types inherited from Ifpack2::Preconditioner< MatrixType::scalar_type, MatrixType::local_ordinal_type, MatrixType::global_ordinal_type, MatrixType::node_type >
typedef Teuchos::ScalarTraits
< MatrixType::scalar_type >
::magnitudeType 
magnitude_type
 The type of the magnitude (absolute value) of a matrix entry. More...
 

Public Member Functions

Teuchos::RCP< const
row_matrix_type
getMatrix () const
 Get the input matrix. More...
 
magnitude_type getRelaxValue () const
 Get RILU(k) relaxation parameter. More...
 
magnitude_type getAbsoluteThreshold () const
 Get absolute threshold value. More...
 
magnitude_type getRelativeThreshold () const
 Get relative threshold value. More...
 
int getLevelOfFill () const
 Get level of fill (the "k" in ILU(k)). More...
 
Tpetra::CombineMode getOverlapMode ()
 Get overlap mode type. More...
 
Tpetra::global_size_t getGlobalNumEntries () const
 Returns the number of nonzero entries in the global graph. More...
 
Teuchos::RCP
< Ifpack2::IlukGraph
< Tpetra::CrsGraph
< local_ordinal_type,
global_ordinal_type, node_type >
, kk_handle_type > > 
getGraph () const
 Return the Ifpack2::IlukGraph associated with this factored matrix. More...
 
const crs_matrix_typegetL () const
 Return the L factor of the ILU factorization. More...
 
const Tpetra::Vector
< scalar_type,
local_ordinal_type,
global_ordinal_type, node_type > & 
getD () const
 Return the diagonal entries of the ILU factorization. More...
 
const crs_matrix_typegetU () const
 Return the U factor of the ILU factorization. More...
 
Teuchos::RCP< const
crs_matrix_type
getCrsMatrix () const
 Return the input matrix A as a Tpetra::CrsMatrix, if possible; else throws. More...
 
Implementation of Ifpack2::Details::CanChangeMatrix
virtual void setMatrix (const Teuchos::RCP< const row_matrix_type > &A)
 Change the matrix to be preconditioned. More...
 
Implementation of Teuchos::Describable interface
std::string description () const
 A one-line description of this object. More...
 
Implementation of Tpetra::Operator
Teuchos::RCP< const
Tpetra::Map
< local_ordinal_type,
global_ordinal_type, node_type > > 
getDomainMap () const
 Returns the Tpetra::Map object associated with the domain of this operator. More...
 
Teuchos::RCP< const
Tpetra::Map
< local_ordinal_type,
global_ordinal_type, node_type > > 
getRangeMap () const
 Returns the Tpetra::Map object associated with the range of this operator. More...
 
void apply (const Tpetra::MultiVector< scalar_type, local_ordinal_type, global_ordinal_type, node_type > &X, Tpetra::MultiVector< scalar_type, local_ordinal_type, global_ordinal_type, node_type > &Y, Teuchos::ETransp mode=Teuchos::NO_TRANS, scalar_type alpha=Teuchos::ScalarTraits< scalar_type >::one(), scalar_type beta=Teuchos::ScalarTraits< scalar_type >::zero()) const
 Apply the (inverse of the) incomplete factorization to X, resulting in Y. More...
 
- Public Member Functions inherited from Ifpack2::Preconditioner< MatrixType::scalar_type, MatrixType::local_ordinal_type, MatrixType::global_ordinal_type, MatrixType::node_type >
virtual ~Preconditioner ()
 Destructor. More...
 
virtual void setZeroStartingSolution (bool zeroStartingSolution)
 Set this preconditioner's parameters. More...
 
- Public Member Functions inherited from Ifpack2::Details::CanChangeMatrix< Tpetra::RowMatrix< MatrixType::scalar_type, MatrixType::local_ordinal_type, MatrixType::global_ordinal_type, MatrixType::node_type > >
virtual void setMatrix (const Teuchos::RCP< const Tpetra::RowMatrix< MatrixType::scalar_type, MatrixType::local_ordinal_type, MatrixType::global_ordinal_type, MatrixType::node_type > > &A)=0
 Set the new matrix. More...
 
virtual ~CanChangeMatrix ()
 Destructor. More...
 

Static Public Member Functions

static Teuchos::RCP< const
row_matrix_type
makeLocalFilter (const Teuchos::RCP< const row_matrix_type > &A)
 Return A, wrapped in a LocalFilter, if necessary. More...
 

Protected Attributes

Teuchos::RCP< const
row_matrix_type
A_
 The (original) input matrix for which to compute ILU(k). More...
 
Teuchos::RCP< iluk_graph_typeGraph_
 The ILU(k) graph. More...
 
Teuchos::RCP< const
row_matrix_type
A_local_
 The matrix whos numbers are used to to compute ILU(k). The graph may be computed using a crs_matrix_type that initialize() constructs temporarily. More...
 
Teuchos::RCP< crs_matrix_typeL_
 The L (lower triangular) factor of ILU(k). More...
 
Teuchos::RCP
< LocalSparseTriangularSolver
< row_matrix_type > > 
L_solver_
 Sparse triangular solver for L. More...
 
Teuchos::RCP< crs_matrix_typeU_
 The U (upper triangular) factor of ILU(k). More...
 
Teuchos::RCP
< LocalSparseTriangularSolver
< row_matrix_type > > 
U_solver_
 Sparse triangular solver for U. More...
 
Teuchos::RCP< vec_type > D_
 The diagonal entries of the ILU(k) factorization. More...
 
bool isKokkosKernelsSpiluk_
 Optional KokkosKernels implementation. More...
 

Implementation of Kokkos Kernels ILU(k).

typedef
crs_matrix_type::local_matrix_device_type 
local_matrix_device_type
 
typedef
local_matrix_device_type::StaticCrsGraphType::row_map_type 
lno_row_view_t
 
typedef
local_matrix_device_type::StaticCrsGraphType::entries_type 
lno_nonzero_view_t
 
typedef
local_matrix_device_type::values_type 
scalar_nonzero_view_t
 
typedef
local_matrix_device_type::StaticCrsGraphType::device_type::memory_space 
TemporaryMemorySpace
 
typedef
local_matrix_device_type::StaticCrsGraphType::device_type::memory_space 
PersistentMemorySpace
 
typedef
local_matrix_device_type::StaticCrsGraphType::device_type::execution_space 
HandleExecSpace
 
typedef
KokkosKernels::Experimental::KokkosKernelsHandle
< typename
lno_row_view_t::const_value_type,
typename
lno_nonzero_view_t::const_value_type,
typename
scalar_nonzero_view_t::value_type,
HandleExecSpace,
TemporaryMemorySpace,
PersistentMemorySpace > 
kk_handle_type
 
typedef Ifpack2::IlukGraph
< Tpetra::CrsGraph
< local_ordinal_type,
global_ordinal_type, node_type >
, kk_handle_type > 
iluk_graph_type
 
 RILUK (const Teuchos::RCP< const row_matrix_type > &A_in)
 Constructor that takes a Tpetra::RowMatrix. More...
 
 RILUK (const Teuchos::RCP< const crs_matrix_type > &A_in)
 Constructor that takes a Tpetra::CrsMatrix. More...
 
virtual ~RILUK ()
 Destructor (declared virtual for memory safety). More...
 
void setParameters (const Teuchos::ParameterList &params)
 
void initialize ()
 Initialize by computing the symbolic incomplete factorization. More...
 
void compute ()
 Compute the (numeric) incomplete factorization. More...
 
bool isInitialized () const
 Whether initialize() has been called on this object. More...
 
bool isComputed () const
 Whether compute() has been called on this object. More...
 
int getNumInitialize () const
 Number of successful initialize() calls for this object. More...
 
int getNumCompute () const
 Number of successful compute() calls for this object. More...
 
int getNumApply () const
 Number of successful apply() calls for this object. More...
 
double getInitializeTime () const
 Total time in seconds taken by all successful initialize() calls for this object. More...
 
double getComputeTime () const
 Total time in seconds taken by all successful compute() calls for this object. More...
 
double getApplyTime () const
 Total time in seconds taken by all successful apply() calls for this object. More...
 
size_t getNodeSmootherComplexity () const
 Get a rough estimate of cost per iteration. More...
 

Detailed Description

template<class MatrixType>
class Ifpack2::RILUK< MatrixType >

ILU(k) factorization of a given Tpetra::RowMatrix.

Template Parameters
MatrixTypeA specialization of Tpetra::RowMatrix.

This class implements a "relaxed" incomplete ILU (ILU) factorization with level k fill. It is based upon the ILU algorithms outlined in Yousef Saad's "Iterative Methods for Sparse Linear Systems", 2nd edition, Chapter 10.

Parameters

For a complete list of valid parameters, see the documentation of setParameters().

The computed factorization is a function of several parameters:

An important note about ordering

Note that the factorization is calculated based upon local ordering. This means that the ordering of the GIDs in the row map is ignored. Initial entries in \(L\), the strictly lower triangular part of A, and \(U\), the strictly upper triangular part of A, are given by

\(L(i,j) = A(i,j)\) if \(j < i\), for local IDs \(i\) and \(j\), even if GID \((j)\) \(>\) GID \((i)\),

and

\(U(i,j) = A(i,j)\) if \(i < j\), for local IDs \(i\) and \(j\), even if GID \((j)\) \(<\) GID \((i)\).

In particular, if the row map GIDs are not in ascending order on processor, then the incomplete factors will be different than those produced by ILU(k) using global IDs. If the row map GIDs are in ascending order, then the factors produced based on LID and GID ordering are the same.

Estimating preconditioner condition numbers

For ill-conditioned matrices, we often have difficulty computing usable incomplete factorizations. The most common source of problems is that the factorization may encounter a small or zero pivot. In that case, the factorization may fail. Even if the factorization succeeds, the factors may be so poorly conditioned that use of them in the iterative phase produces meaningless results. Before we can fix this problem, we must be able to detect it. To this end, we use a simple but effective condition number estimate for \((LU)^{-1}\).

The condition number of a matrix \(B\), called \(cond_p(B)\), is defined as \(cond_p(B) = \|B\|_p\|B^{-1}\|_p\) in some appropriate norm \(p\). \(cond_p(B)\) gives some indication of how many accurate floating point digits can be expected from operations involving the matrix and its inverse. A condition number approaching the accuracy of a given floating point number system, about 15 decimal digits in IEEE double precision, means that any results involving \(B\) or \(B^{-1}\) may be meaningless.

The \(\infty\)-norm of a vector \(y\) is defined as the maximum of the absolute values of the vector entries, and the \(\infty\)-norm of a matrix C is defined as \(\|C\|_\infty = \max_{\|y\|_\infty = 1} \|Cy\|_\infty\). A crude lower bound for the \(cond_\infty(C)\) is \(\|C^{-1}e\|_\infty\) where \(e = (1, 1, \ldots, 1)^T\). It is a lower bound because \(cond_\infty(C) = \|C\|_\infty\|C^{-1}\|_\infty \ge \|C^{-1}\|_\infty \ge |C^{-1}e\|_\infty\).

For our purposes, we want to estimate \(cond_\infty(LU)\), where \(L\) and \(U\) are our incomplete factors. Edmond in his Ph.D. thesis demonstrates that \(\|(LU)^{-1}e\|_\infty\) provides an effective estimate for \(cond_\infty(LU)\). Furthermore, since finding \(z\) such that \(LUz = y\) is a basic kernel for applying the preconditioner, computing this estimate of \(cond_\infty(LU)\) is performed by setting \(y = e\), calling the solve kernel to compute \(z\) and then computing \(\|z\|_\infty\).

A priori diagonal perturbations

If we detect using the above method that our factorization is too ill-conditioned, we can improve the conditioning by perturbing the matrix diagonal and restarting the factorization using this more diagonally dominant matrix. In order to apply perturbation, prior to starting the factorization, we compute a diagonal perturbation of our matrix \(A\) and perform the factorization on this perturbed matrix. The overhead cost of perturbing the diagonal is minimal since the first step in computing the incomplete factors is to copy the matrix \(A\) into the memory space for the incomplete factors. We simply compute the perturbed diagonal at this point.

The actual perturbation values we use are the diagonal values \((d_1, d_2, \ldots, d_n)\) with \(d_i = sgn(d_i)\alpha + d_i\rho\), \(i=1, 2, \ldots, n\), where \(n\) is the matrix dimension and \(sgn(d_i)\) returns the sign of the diagonal entry. This has the effect of forcing the diagonal values to have minimal magnitude of \(\alpha\) and to increase each by an amount proportional to \(\rho\), and still keep the sign of the original diagonal entry.

Phases of computation

Every Ifpack2 preconditioner has the following phases of computation:

  1. initialize()
  2. compute()
  3. apply()

RILUK constructs the symbolic incomplete factorization (that is, the structure of the incomplete factors) in the initialize() phase. It computes the numerical incomplete factorization (that is, it fills in the factors' entries with their correct values) in the compute() phase. The apply() phase applies the incomplete factorization to a given multivector using two triangular solves.

Measuring performance

Each RILUK object keeps track of both the time required for various operations, and the number of times those operations have been applied for that object. The operations tracked include:

The getNum* methods return the number of times that operation was called. The get*Time methods return the total number of seconds spent in all invocations of that operation. For example, getApplyTime() returns the number of seconds spent in all apply() calls. For an average time per apply() call, divide by getNumApply(), the total number of calls to apply().

Member Typedef Documentation

template<class MatrixType>
typedef MatrixType::scalar_type Ifpack2::RILUK< MatrixType >::scalar_type

The type of the entries of the input MatrixType.

template<class MatrixType>
typedef MatrixType::local_ordinal_type Ifpack2::RILUK< MatrixType >::local_ordinal_type

The type of local indices in the input MatrixType.

template<class MatrixType>
typedef MatrixType::global_ordinal_type Ifpack2::RILUK< MatrixType >::global_ordinal_type

The type of global indices in the input MatrixType.

template<class MatrixType>
typedef MatrixType::node_type Ifpack2::RILUK< MatrixType >::node_type

The Node type used by the input MatrixType.

template<class MatrixType>
typedef Teuchos::ScalarTraits<scalar_type>::magnitudeType Ifpack2::RILUK< MatrixType >::magnitude_type

The type of the magnitude (absolute value) of a matrix entry.

template<class MatrixType>
typedef node_type::device_type Ifpack2::RILUK< MatrixType >::device_type

The Kokkos device type of the input MatrixType.

template<class MatrixType>
typedef node_type::execution_space Ifpack2::RILUK< MatrixType >::execution_space

The Kokkos execution space of the input MatrixType.

template<class MatrixType>
typedef Tpetra::RowMatrix<scalar_type, local_ordinal_type, global_ordinal_type, node_type> Ifpack2::RILUK< MatrixType >::row_matrix_type

Tpetra::RowMatrix specialization used by this class.

template<class MatrixType>
typedef Tpetra::CrsMatrix<scalar_type, local_ordinal_type, global_ordinal_type, node_type> Ifpack2::RILUK< MatrixType >::crs_matrix_type

Tpetra::CrsMatrix specialization used by this class for representing L and U.

template<class MatrixType>
typedef crs_matrix_type::impl_scalar_type Ifpack2::RILUK< MatrixType >::impl_scalar_type

Scalar type stored in Kokkos::Views (CrsMatrix and MultiVector)

Constructor & Destructor Documentation

template<class MatrixType >
Ifpack2::RILUK< MatrixType >::RILUK ( const Teuchos::RCP< const row_matrix_type > &  A_in)

Constructor that takes a Tpetra::RowMatrix.

Parameters
A_in[in] The input matrix.
template<class MatrixType >
Ifpack2::RILUK< MatrixType >::RILUK ( const Teuchos::RCP< const crs_matrix_type > &  A_in)

Constructor that takes a Tpetra::CrsMatrix.

This constructor exists to avoid "ambiguous constructor" warnings. It does the same thing as the constructor that takes a Tpetra::RowMatrix.

Parameters
A_in[in] The input matrix.
template<class MatrixType >
Ifpack2::RILUK< MatrixType >::~RILUK ( )
virtual

Destructor (declared virtual for memory safety).

Member Function Documentation

template<class MatrixType >
void Ifpack2::RILUK< MatrixType >::setParameters ( const Teuchos::ParameterList params)
virtual

Set parameters for the incomplete factorization.

This preconditioner supports the following parameters:

  • "fact: iluk level-of-fill" (int)
  • "fact: absolute threshold" (magnitude_type)
  • "fact: relative threshold" (magnitude_type)
  • "fact: relax value" (magnitude_type)
  • "fact: iluk overalloc" (double)

Implements Ifpack2::Preconditioner< MatrixType::scalar_type, MatrixType::local_ordinal_type, MatrixType::global_ordinal_type, MatrixType::node_type >.

template<class MatrixType >
void Ifpack2::RILUK< MatrixType >::initialize ( )
virtual
template<class MatrixType >
void Ifpack2::RILUK< MatrixType >::compute ( )
virtual

Compute the (numeric) incomplete factorization.

This function computes the RILU(k) factors L and U using the current:

  • Ifpack2_IlukGraph specifying the structure of L and U.
  • Value for the RILU(k) relaxation parameter.
  • Value for the a priori diagonal threshold values.

initialize() must be called first, before this method may be called.

Implements Ifpack2::Preconditioner< MatrixType::scalar_type, MatrixType::local_ordinal_type, MatrixType::global_ordinal_type, MatrixType::node_type >.

template<class MatrixType>
bool Ifpack2::RILUK< MatrixType >::isInitialized ( ) const
inlinevirtual
template<class MatrixType>
bool Ifpack2::RILUK< MatrixType >::isComputed ( ) const
inlinevirtual
template<class MatrixType>
int Ifpack2::RILUK< MatrixType >::getNumInitialize ( ) const
inlinevirtual
template<class MatrixType>
int Ifpack2::RILUK< MatrixType >::getNumCompute ( ) const
inlinevirtual
template<class MatrixType>
int Ifpack2::RILUK< MatrixType >::getNumApply ( ) const
inlinevirtual
template<class MatrixType>
double Ifpack2::RILUK< MatrixType >::getInitializeTime ( ) const
inlinevirtual
template<class MatrixType>
double Ifpack2::RILUK< MatrixType >::getComputeTime ( ) const
inlinevirtual
template<class MatrixType>
double Ifpack2::RILUK< MatrixType >::getApplyTime ( ) const
inlinevirtual
template<class MatrixType >
size_t Ifpack2::RILUK< MatrixType >::getNodeSmootherComplexity ( ) const

Get a rough estimate of cost per iteration.

template<class MatrixType >
void Ifpack2::RILUK< MatrixType >::setMatrix ( const Teuchos::RCP< const row_matrix_type > &  A)
virtual

Change the matrix to be preconditioned.

Parameters
A[in] The new matrix.
Postcondition
! isInitialized ()
! isComputed ()

Calling this method resets the preconditioner's state. After calling this method with a nonnull input, you must first call initialize() and compute() (in that order) before you may call apply().

You may call this method with a null input. If A is null, then you may not call initialize() or compute() until you first call this method again with a nonnull input. This method invalidates any previous factorization whether or not A is null, so calling setMatrix() with a null input is one way to clear the preconditioner's state (and free any memory that it may be using).

The new matrix A need not necessarily have the same Maps or even the same communicator as the original matrix.

template<class MatrixType >
std::string Ifpack2::RILUK< MatrixType >::description ( ) const

A one-line description of this object.

template<class MatrixType >
Teuchos::RCP< const Tpetra::Map< typename RILUK< MatrixType >::local_ordinal_type, typename RILUK< MatrixType >::global_ordinal_type, typename RILUK< MatrixType >::node_type > > Ifpack2::RILUK< MatrixType >::getDomainMap ( ) const
virtual
template<class MatrixType >
Teuchos::RCP< const Tpetra::Map< typename RILUK< MatrixType >::local_ordinal_type, typename RILUK< MatrixType >::global_ordinal_type, typename RILUK< MatrixType >::node_type > > Ifpack2::RILUK< MatrixType >::getRangeMap ( ) const
virtual
template<class MatrixType >
void Ifpack2::RILUK< MatrixType >::apply ( const Tpetra::MultiVector< scalar_type, local_ordinal_type, global_ordinal_type, node_type > &  X,
Tpetra::MultiVector< scalar_type, local_ordinal_type, global_ordinal_type, node_type > &  Y,
Teuchos::ETransp  mode = Teuchos::NO_TRANS,
scalar_type  alpha = Teuchos::ScalarTraits<scalar_type>::one (),
scalar_type  beta = Teuchos::ScalarTraits<scalar_type>::zero () 
) const
virtual

Apply the (inverse of the) incomplete factorization to X, resulting in Y.

For an incomplete factorization \(A \approx LDU\), this method computes the following, depending on the value of mode:

  • If mode = Teuchos::NO_TRANS, it computes Y = beta*Y + alpha*(U \ (D \ (L \ X)))
  • If mode = Teuchos::TRANS, it computes Y = beta*Y + alpha*(L^T \ (D^T \ (U^T \ X)))
  • If mode = Teuchos::CONJ_TRANS, it computes Y = beta*Y + alpha*(L^* \ (D^* \ (U^* \ X))), where the asterisk indicates the conjugate transpose.

If alpha is zero, then the result of applying the operator to a vector is ignored. This matters because zero times NaN (not a number) is NaN, not zero. Analogously, if beta is zero, then any values in Y on input are ignored.

Parameters
X[in] The input multivector.
Y[in/out] The output multivector.
mode[in] If Teuchos::TRANS resp. Teuchos::CONJ_TRANS, apply the transpose resp. conjugate transpose of the incomplete factorization. Otherwise, don't apply the tranpose.
alpha[in] Scaling factor for the result of applying the preconditioner.
beta[in] Scaling factor for the initial value of Y.

Implements Ifpack2::Preconditioner< MatrixType::scalar_type, MatrixType::local_ordinal_type, MatrixType::global_ordinal_type, MatrixType::node_type >.

template<class MatrixType >
Teuchos::RCP< const typename RILUK< MatrixType >::row_matrix_type > Ifpack2::RILUK< MatrixType >::getMatrix ( ) const
virtual
template<class MatrixType>
magnitude_type Ifpack2::RILUK< MatrixType >::getRelaxValue ( ) const
inline

Get RILU(k) relaxation parameter.

template<class MatrixType>
magnitude_type Ifpack2::RILUK< MatrixType >::getAbsoluteThreshold ( ) const
inline

Get absolute threshold value.

template<class MatrixType>
magnitude_type Ifpack2::RILUK< MatrixType >::getRelativeThreshold ( ) const
inline

Get relative threshold value.

template<class MatrixType>
int Ifpack2::RILUK< MatrixType >::getLevelOfFill ( ) const
inline

Get level of fill (the "k" in ILU(k)).

template<class MatrixType>
Tpetra::CombineMode Ifpack2::RILUK< MatrixType >::getOverlapMode ( )
inline

Get overlap mode type.

template<class MatrixType>
Tpetra::global_size_t Ifpack2::RILUK< MatrixType >::getGlobalNumEntries ( ) const
inline

Returns the number of nonzero entries in the global graph.

template<class MatrixType>
Teuchos::RCP<Ifpack2::IlukGraph<Tpetra::CrsGraph<local_ordinal_type, global_ordinal_type, node_type>, kk_handle_type> > Ifpack2::RILUK< MatrixType >::getGraph ( ) const
inline

Return the Ifpack2::IlukGraph associated with this factored matrix.

template<class MatrixType >
const RILUK< MatrixType >::crs_matrix_type & Ifpack2::RILUK< MatrixType >::getL ( ) const

Return the L factor of the ILU factorization.

template<class MatrixType >
const Tpetra::Vector< typename RILUK< MatrixType >::scalar_type, typename RILUK< MatrixType >::local_ordinal_type, typename RILUK< MatrixType >::global_ordinal_type, typename RILUK< MatrixType >::node_type > & Ifpack2::RILUK< MatrixType >::getD ( ) const

Return the diagonal entries of the ILU factorization.

template<class MatrixType >
const RILUK< MatrixType >::crs_matrix_type & Ifpack2::RILUK< MatrixType >::getU ( ) const

Return the U factor of the ILU factorization.

template<class MatrixType >
Teuchos::RCP< const typename RILUK< MatrixType >::crs_matrix_type > Ifpack2::RILUK< MatrixType >::getCrsMatrix ( ) const

Return the input matrix A as a Tpetra::CrsMatrix, if possible; else throws.

template<class MatrixType >
Teuchos::RCP< const typename RILUK< MatrixType >::row_matrix_type > Ifpack2::RILUK< MatrixType >::makeLocalFilter ( const Teuchos::RCP< const row_matrix_type > &  A)
static

Return A, wrapped in a LocalFilter, if necessary.

"If necessary" means that if A is already a LocalFilter, or if its communicator only has one process, then we don't need to wrap it, so we just return A.

Member Data Documentation

template<class MatrixType>
Teuchos::RCP<const row_matrix_type> Ifpack2::RILUK< MatrixType >::A_
protected

The (original) input matrix for which to compute ILU(k).

template<class MatrixType>
Teuchos::RCP<iluk_graph_type> Ifpack2::RILUK< MatrixType >::Graph_
protected

The ILU(k) graph.

template<class MatrixType>
Teuchos::RCP<const row_matrix_type> Ifpack2::RILUK< MatrixType >::A_local_
protected

The matrix whos numbers are used to to compute ILU(k). The graph may be computed using a crs_matrix_type that initialize() constructs temporarily.

template<class MatrixType>
Teuchos::RCP<crs_matrix_type> Ifpack2::RILUK< MatrixType >::L_
protected

The L (lower triangular) factor of ILU(k).

template<class MatrixType>
Teuchos::RCP<LocalSparseTriangularSolver<row_matrix_type> > Ifpack2::RILUK< MatrixType >::L_solver_
protected

Sparse triangular solver for L.

template<class MatrixType>
Teuchos::RCP<crs_matrix_type> Ifpack2::RILUK< MatrixType >::U_
protected

The U (upper triangular) factor of ILU(k).

template<class MatrixType>
Teuchos::RCP<LocalSparseTriangularSolver<row_matrix_type> > Ifpack2::RILUK< MatrixType >::U_solver_
protected

Sparse triangular solver for U.

template<class MatrixType>
Teuchos::RCP<vec_type> Ifpack2::RILUK< MatrixType >::D_
protected

The diagonal entries of the ILU(k) factorization.

template<class MatrixType>
bool Ifpack2::RILUK< MatrixType >::isKokkosKernelsSpiluk_
protected

Optional KokkosKernels implementation.


The documentation for this class was generated from the following files: