Galeri  Development
 All Classes Files Functions Variables Pages
Laplacian3D.cpp
// @HEADER
// *****************************************************************************
// Galeri: Finite Element and Matrix Generation Package
//
// Copyright 2006 ETHZ/NTESS and the Galeri contributors.
// SPDX-License-Identifier: BSD-3-Clause
// *****************************************************************************
// @HEADER
#include "Galeri_ConfigDefs.h"
#include "Galeri_Utils.h"
#include "Galeri_FiniteElements.h"
#ifdef HAVE_MPI
#include "mpi.h"
#include "Epetra_MpiComm.h"
#else
#include "Epetra_SerialComm.h"
#endif
// ==========================================================
// This file solves the scalar elliptic problem
//
// - \mu \nabla u + \sigma u = f on \Omega
// u = g on \partial \Omega
//
// where \Omega is a 3D cube, divided into hexahedra.
// `f' is specified by function `Force()', the Dirichlet boundary condition
// by function `BoundaryValue()', and the value of \mu and
// \sigma can be changed in the functions Diffusion() and
// Source(). The code solves the corresponding linear system
// using AztecOO with ML preconditioner, and writes the
// solution into a MEDIT-compatible format. Then, it computes
// the L2 and H1 norms of the solution and the error.
//
// \author Marzio Sala, ETHZ/COLAB
//
// \date Last updated on 15-Sep-05
// ==========================================================
double Diffusion(const double& x, const double& y, const double& z)
{
return (1.0);
}
double Source(const double& x, const double& y, const double& z)
{
return (0.0);
}
double Force(const double& x, const double& y, const double& z)
{
return (-6.0);
}
// Specifies the boundary condition.
double BoundaryValue(const double& x, const double& y,
const double& z, const int& PatchID)
{
return(x * x + y * y + z * z);
}
// Specifies the boundary condition.
int BoundaryType(const int& PatchID)
{
return(Galeri::FiniteElements::GALERI_DIRICHLET);
}
// Returns the value of the exact solution and its first
// derivatives with respect to x, y and z.
int ExactSolution(double x, double y, double z, double* res)
{
res[0] = x * x + y * y + z * z;
res[1] = 2 * x;
res[2] = 2 * y;
res[3] = 2 * z;
return(0);
}
using namespace Galeri;
using namespace Galeri::FiniteElements;
// =========== //
// main driver //
// =========== //
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
MPI_Init(&argc,&argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD);
#else
Epetra_SerialComm Comm;
#endif
try {
// ============================================================ //
// Prepares the computational domain. For simplicity, //
// the computation domain has (nx * NumProcs, ny, nz) elements, //
// and it is partitioned into (NumProcs, 1, 1) subdomains. //
// If you want to change the grid element, remember to modify //
// the quadrature in GalerkinVariational<T>. Now T is set to //
// HexQuadrature. //
// ============================================================ //
int nx = 4 * Comm.NumProc();
int ny = 4;
int nz = 4;
int mx = Comm.NumProc(), my = 1, mz = 1;
HexCubeGrid Grid(Comm, nx, ny, nz, mx, my, mz);
// ======================================================== //
// Prepares the linear system. This requires the definition //
// of a quadrature formula compatible with the grid, a //
// variational formulation, and a problem object which take //
// care of filling matrix and right-hand side. //
// ======================================================== //
Epetra_CrsMatrix A(Copy, Grid.RowMap(), 0);
Epetra_Vector LHS(Grid.RowMap());
Epetra_Vector RHS(Grid.RowMap());
int NumQuadratureNodes = 1;
Laplacian(NumQuadratureNodes, Diffusion, Source, Force,
BoundaryValue, BoundaryType);
LinearProblem FiniteElementProblem(Grid, Laplacian, A, LHS, RHS);
FiniteElementProblem.Compute();
// =================================================== //
// The solution must be computed here by solving the //
// linear system A * LHS = RHS. //
//
// NOTE: Solve() IS A SIMPLE FUNCTION BASED ON LAPACK, //
// THEREFORE THE MATRIX IS CONVERTED TO DENSE FORMAT. //
// IT WORKS IN SERIAL ONLY. //
// EVEN MEDIUM-SIZED MATRICES MAY REQUIRE A LOT OF //
// MEMORY AND CPU-TIME! USERS SHOULD CONSIDER INSTEAD //
// AZTECOO, ML, IFPACK OR OTHER SOLVERS. //
// =================================================== //
Solve(&A, &LHS, &RHS);
// ========================= //
// After the solution: //
// - computation of the norm //
// - output using MEDIT //
// ========================= //
FiniteElementProblem.ComputeNorms(LHS, ExactSolution);
MEDITInterface MEDIT(Comm);
MEDIT.Write(Grid, "Laplacian3D", LHS);
}
catch (Exception& rhs)
{
if (Comm.MyPID() == 0)
rhs.Print();
}
catch (int e) {
cerr << "Caught exception, value = " << e << endl;
}
catch (...) {
cerr << "Caught generic exception" << endl;
}
#ifdef HAVE_MPI
MPI_Finalize();
#endif
return(0);
}