Didasko  Development
 All Classes Namespaces Files Functions Variables Pages
// @HEADER
// ***********************************************************************
//
// Didasko Tutorial Package
// Copyright (2005) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions about Didasko? Contact Marzio Sala (marzio.sala _AT_ gmail.com)
//
// ***********************************************************************
// @HEADER
// Solve a linear system with Aztec, using Aztec as a preconditioner
// (recursive way)
//
// NOTE: This example first builds the matrix, then solves it with AztecOO
//
// NOTE2: this example implemenets minor modifications to one of the
// examples included in the AztecOO package. Please give a look to file
// ${TRILINOS_HOME}/packages/aztecoo/examples/AztecOO_RecursiveCall/cxx_main.cpp
// for more details.
#include "Didasko_ConfigDefs.h"
#if defined(HAVE_DIDASKO_EPETRA) && defined(HAVE_DIDASKO_TRIUTILS)
#include "Epetra_ConfigDefs.h"
#ifdef HAVE_MPI
#include "Epetra_MpiComm.h"
#include "mpi.h"
#else
#include "Epetra_SerialComm.h"
#endif
#include "Epetra_Map.h"
#include "Epetra_Vector.h"
#include "Epetra_CrsMatrix.h"
#include "Epetra_LinearProblem.h"
#include "AztecOO.h"
#include "AztecOO_Operator.h"
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
MPI_Init(&argc,&argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD);
#else
#endif
/* this example creates a tridiagonal matrix of type
*
* | 2 -1 |
* | -1 2 -1 |
* A = | ... ... ... |
* | -1 2 |
*/
// set global dimension to 5, could be any number
int NumGlobalElements = 5;
// create a linear map
Epetra_Map Map(NumGlobalElements,0,Comm);
// local number of rows
int NumMyElements = Map.NumMyElements();
// get update list
int * MyGlobalElements = new int [NumMyElements];
Map.MyGlobalElements( MyGlobalElements );
// Create a Epetra_Matrix
// create a CSR matrix
Epetra_CrsMatrix A(Copy,Map,3);
// Add rows one-at-a-time
// Need some vectors to help
// Off diagonal Values will always be -1
double *Values = new double[2];
Values[0] = -1.0; Values[1] = -1.0;
int *Indices = new int[2];
double two = 2.0;
int NumEntries;
for( int i=0 ; i<NumMyElements; ++i ) {
if (MyGlobalElements[i]==0) {
Indices[0] = 1;
NumEntries = 1;
} else if (MyGlobalElements[i] == NumGlobalElements-1) {
Indices[0] = NumGlobalElements-2;
NumEntries = 1;
} else {
Indices[0] = MyGlobalElements[i]-1;
Indices[1] = MyGlobalElements[i]+1;
NumEntries = 2;
}
A.InsertGlobalValues(MyGlobalElements[i], NumEntries, Values, Indices);
// Put in the diagonal entry
A.InsertGlobalValues(MyGlobalElements[i], 1, &two, MyGlobalElements+i);
}
// Finish up
A.FillComplete();
// E N D O F M A T R I X C O N S T R U C T I O N
Epetra_Vector x(Map);
Epetra_Vector b(Map);
x.Random();
// this is the linear problem to be solved: set the linear operator,
// the solution and the right-hand side
Epetra_LinearProblem A_Problem(&A, &x, &b);
// and this is the AztecOO solver
AztecOO A_Solver(A_Problem);
// --- Here we define the precondioner ---
// create P as a copy of A, in principle can be different
// Here we create the linear problem which will be used as
// preconditioner. This requires sereval steps.
// (Note that all the P_ prefix indentify preconditioner'
// objects)
// 1. we create the linear system solve at each prec step
// and we assign the linear operator (in this case, the
// matrix A itself)
P_Problem.SetOperator(&P);
// as we wish to use AztecOO to solve the prec step
// (in a recursive way), we have to define an AztecOO
// object.
AztecOO P_Solver(P_Problem);
// now, we customize certain parameters
P_Solver.SetAztecOption(AZ_precond, AZ_Jacobi);
P_Solver.SetAztecOption(AZ_output, AZ_none);
P_Solver.SetAztecOption(AZ_solver, AZ_cg);
// The last step is to create an AztecOO_Operator, so that
// we can set the Aztec's preconditioner with.
AztecOO_Operator P_Operator(&P_Solver, 10);
// Here we set the user's defined preconditioners
A_Solver.SetPrecOperator(&P_Operator);
// --- up to here ---
// Finally, we solve the linear system:
int Niters=100;
A_Solver.SetAztecOption(AZ_kspace, Niters);
A_Solver.SetAztecOption(AZ_solver, AZ_GMRESR);
A_Solver.Iterate(Niters, 1.0E-12);
#ifdef HAVE_MPI
MPI_Finalize() ;
#endif
return 0;
}
#else
#include <stdlib.h>
#include <stdio.h>
#ifdef HAVE_MPI
#include "mpi.h"
#endif
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
MPI_Init(&argc,&argv);
#endif
puts("Please configure Didasko with:\n"
"--enable-epetra\n"
"--enable-triutils\n"
"--enable-aztecoo\n");
#ifdef HAVE_MPI
MPI_Finalize();
#endif
return 0;
}
#endif