Anasazi  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
BlockDavidson/BlockDavidsonEpetraExGenPrecIfpack.cpp

This is an example of how to use the Anasazi::BlockDavidsonSolMgr solver manager to solve a generalized eigenvalue problem, using Epetra data structures and exploiting a incomplete Cholesky preconditioner from IFPACK.

// @HEADER
// *****************************************************************************
// Anasazi: Block Eigensolvers Package
//
// Copyright 2004 NTESS and the Anasazi contributors.
// SPDX-License-Identifier: BSD-3-Clause
// *****************************************************************************
// @HEADER
#include "Epetra_CrsMatrix.h"
#include "Epetra_InvOperator.h"
// Include header for Ifpack incomplete Cholesky preconditioner
#include "Ifpack.h"
#ifdef HAVE_MPI
#include "Epetra_MpiComm.h"
#include <mpi.h>
#else
#include "Epetra_SerialComm.h"
#endif
#include "Epetra_Map.h"
#include "ModeLaplace2DQ2.h"
using namespace Anasazi;
//*****************************************************************************
// Begin main routine
//*****************************************************************************
int main(int argc, char *argv[]) {
#ifdef HAVE_MPI
// Initialize MPI
MPI_Init(&argc,&argv);
#endif
// Create an Epetra communicator
#ifdef HAVE_MPI
Epetra_MpiComm Comm(MPI_COMM_WORLD);
#else
#endif
//************************************
// Get the parameters from the command line
//************************************
//
int nev = 10;
int blockSize = 10;
int numBlocks = 4;
int maxRestarts = 100;
double tol = 1.0e-8;
int numElements = 10;
bool verbose = true;
std::string which("SM");
bool usePrec = true;
double prec_dropTol = 1e-4;
int prec_lofill = 0;
cmdp.setOption("nev",&nev,"Number of eigenpairs to compted.");
cmdp.setOption("blockSize",&blockSize,"Block size.");
cmdp.setOption("numBlocks",&numBlocks,"Number of blocks in basis.");
cmdp.setOption("maxRestarts",&maxRestarts,"Maximum number of restarts.");
cmdp.setOption("tol",&tol,"Relative convergence tolerance.");
cmdp.setOption("numElements",&numElements,"Number of elements in the discretization.");
cmdp.setOption("verbose","quiet",&verbose,"Print messages and results.");
cmdp.setOption("sort",&which,"Targetted eigenvalues (SM or LM).");
cmdp.setOption("usePrec","noPrec",&usePrec,"Use Ifpack for preconditioning.");
cmdp.setOption("prec_dropTol",&prec_dropTol,"Preconditioner: drop tolerance.");
cmdp.setOption("prec_lofill",&prec_lofill,"Preconditioner: level of fill.");
#ifdef HAVE_MPI
MPI_Finalize();
#endif
return -1;
}
//************************************
// Create an Anasazi output manager
//************************************
//
// Set verbosity level
if (verbose) {
verbosity += Anasazi::FinalSummary;
}
BasicOutputManager<double> printer(verbosity);
printer.stream(Errors) << Anasazi_Version() << std::endl << std::endl;
//************************************
// Some useful typedefs
//************************************
//
typedef Epetra_MultiVector MV;
typedef Epetra_Operator OP;
//************************************
// Create the problem matrices
//************************************
//
printer.stream(Errors) << "Generating problem matrices..." << std::flush;
// Number of dimension of the domain
const int space_dim = 2;
// Size of each of the dimensions of the domain
std::vector<double> brick_dim( space_dim );
brick_dim[0] = 1.0;
brick_dim[1] = 1.0;
// Number of elements in each of the dimensions of the domain
std::vector<int> elements( space_dim );
elements[0] = numElements;
elements[1] = numElements;
// Create problem
Teuchos::rcp( new ModeLaplace2DQ2(Comm, brick_dim[0], elements[0], brick_dim[1], elements[1]) );
// Get the stiffness and mass matrices
Teuchos::RCP<Epetra_CrsMatrix> K = Teuchos::rcp( const_cast<Epetra_CrsMatrix *>(testCase->getStiffness()), false );
Teuchos::RCP<Epetra_CrsMatrix> M = Teuchos::rcp( const_cast<Epetra_CrsMatrix *>(testCase->getMass()), false );
// tell the user that we're done
printer.stream(Errors) << " done." << std::endl;
//************************************
// Select the Preconditioner
//************************************
//
if (usePrec) {
printer.stream(Errors) << "Constructing Incomplete Cholesky preconditioner..." << std::flush;
Ifpack precFactory;
// additive-Schwartz incomplete Cholesky with thresholding; see IFPACK documentation
std::string precType = "IC stand-alone";
int overlapLevel = 0;
prec = Teuchos::rcp( precFactory.Create(precType,K.get(),overlapLevel) );
// parameters for preconditioner
precParams.set("fact: drop tolerance",prec_dropTol);
precParams.set("fact: level-of-fill",prec_lofill);
IFPACK_CHK_ERR(prec->SetParameters(precParams));
IFPACK_CHK_ERR(prec->Initialize());
IFPACK_CHK_ERR(prec->Compute());
//
printer.stream(Errors)
<< " done." << std::endl;
// encapsulate this preconditioner into a IFPACKPrecOp class
PrecOp = Teuchos::rcp( new Epetra_InvOperator(&*prec) );
}
//************************************
// Call the BlockDavidson solver manager
//***********************************
// Create an Epetra_MultiVector for an initial vector to start the solver.
// Note: This needs to have the same number of columns as the blocksize.
//
ivec->Random();
// Create the eigenproblem.
//
// Inform the eigenproblem that the operator K is symmetric
//
MyProblem->setHermitian(true);
// Pass the preconditioner to the eigenproblem
//
if (usePrec) {
MyProblem->setPrec(PrecOp);
}
// Set the number of eigenvalues requested
//
MyProblem->setNEV( nev );
// Inform the eigenproblem that you are finishing passing it information
//
bool boolret = MyProblem->setProblem();
if (boolret != true) {
printer.print(Errors,"Anasazi::BasicEigenproblem::setProblem() returned an error.\n");
#ifdef HAVE_MPI
MPI_Finalize();
#endif
return -1;
}
//************************************
// Create parameter list to pass into the solver manager
//************************************
//
MyPL.set( "Verbosity", verbosity );
MyPL.set( "Which", which );
MyPL.set( "Block Size", blockSize );
MyPL.set( "Num Blocks", numBlocks );
MyPL.set( "Maximum Restarts", maxRestarts );
MyPL.set( "Convergence Tolerance", tol );
//
// Create the solver manager
BlockDavidsonSolMgr<double, MV, OP> MySolverMan(MyProblem, MyPL);
//************************************
// Solve the problem
//************************************
//
printer.stream(Errors) << "Solving eigenvalue problem..." << std::endl;
ReturnType returnCode = MySolverMan.solve();
// print some precond info
if (usePrec) {
printer.stream(FinalSummary) << *prec << std::endl;
}
//************************************
// Get the eigenvalues and eigenvectors from the eigenproblem
//************************************
//
Eigensolution<double,MV> sol = MyProblem->getSolution();
std::vector<Value<double> > evals = sol.Evals;
Teuchos::RCP<MV> evecs = sol.Evecs;
//************************************
// Compute residuals, just for funsies
//************************************
//
std::vector<double> normR(sol.numVecs);
if (sol.numVecs > 0) {
Epetra_MultiVector Kvec( K->OperatorDomainMap(), evecs->NumVectors() );
Epetra_MultiVector Mvec( M->OperatorDomainMap(), evecs->NumVectors() );
T.putScalar(0.0);
for (int i=0; i<sol.numVecs; i++) {
T(i,i) = evals[i].realpart;
}
K->Apply( *evecs, Kvec );
M->Apply( *evecs, Mvec );
MVT::MvTimesMatAddMv( -1.0, Mvec, T, 1.0, Kvec );
MVT::MvNorm( Kvec, normR );
}
//************************************
// Print the results
//************************************
//
std::ostringstream os;
os.setf(std::ios_base::right, std::ios_base::adjustfield);
os<<"Solver manager returned " << (returnCode == Converged ? "converged." : "unconverged.") << std::endl;
os<<std::endl;
os<<"------------------------------------------------------"<<std::endl;
os<<std::setw(16)<<"Eigenvalue"
<<std::setw(18)<<"Direct Residual"
<<std::endl;
os<<"------------------------------------------------------"<<std::endl;
for (int i=0; i<sol.numVecs; i++) {
os<<std::setw(16)<<evals[i].realpart
<<std::setw(18)<<normR[i]/evals[i].realpart
<<std::endl;
}
os<<"------------------------------------------------------"<<std::endl;
printer.print(Errors,os.str());
#ifdef HAVE_MPI
MPI_Finalize();
#endif
return 0;
}