13 #ifndef __AnasaziTsqrOrthoManagerImpl_hpp
14 #define __AnasaziTsqrOrthoManagerImpl_hpp
23 #include "Teuchos_ParameterListAcceptorDefaultBase.hpp"
95 template<
class Scalar,
class MV>
99 typedef Scalar scalar_type;
101 typedef MV multivector_type;
111 typedef typename MVT::tsqr_adaptor_type tsqr_adaptor_type;
155 const std::string& label);
171 if (label != label_) {
177 const std::string&
getLabel ()
const {
return label_; }
211 norm (
const MV& X, std::vector<magnitude_type>& normvec)
const;
284 return projectAndNormalizeImpl (X, X,
false, C, B, Q);
315 return projectAndNormalizeImpl (X_in, X_out,
true, C, B, Q);
329 for (
int k = 0; k < ncols; ++k) {
342 mat_type X1_T_X2 (ncols_X1, ncols_X2);
367 tsqr_adaptor_type tsqrAdaptor_;
387 bool randomizeNullSpace_;
394 bool reorthogonalizeBlocks_;
399 bool throwOnReorthogFault_;
402 magnitude_type blockReorthogThreshold_;
405 magnitude_type relativeRankTolerance_;
413 bool forceNonnegativeDiagonal_;
417 raiseReorthogFault (
const std::vector<magnitude_type>& normsAfterFirstPass,
418 const std::vector<magnitude_type>& normsAfterSecondPass,
419 const std::vector<int>& faultIndices);
431 checkProjectionDims (
int& ncols_X,
451 const bool attemptToRecycle =
true)
const;
462 projectAndNormalizeImpl (MV& X_in,
464 const bool outOfPlace,
483 const mat_ptr& C)
const;
511 int rawNormalize (MV& X, MV& Q,
mat_type& B);
530 int normalizeOne (MV& X, mat_ptr B)
const;
559 int normalizeImpl (MV& X, MV& Q, mat_ptr B,
const bool outOfPlace);
562 template<
class Scalar,
class MV>
568 using Teuchos::parameterList;
570 using Teuchos::sublist;
571 typedef magnitude_type M;
573 RCP<const ParameterList> defaultParams = getValidParameters ();
575 RCP<ParameterList> tsqrParams;
577 RCP<ParameterList> theParams;
579 theParams = parameterList (*defaultParams);
587 randomizeNullSpace_ =
588 theParams->
get<
bool> (
"randomizeNullSpace",
589 defaultParams->get<
bool> (
"randomizeNullSpace"));
590 reorthogonalizeBlocks_ =
591 theParams->get<
bool> (
"reorthogonalizeBlocks",
592 defaultParams->get<
bool> (
"reorthogonalizeBlocks"));
593 throwOnReorthogFault_ =
594 theParams->get<
bool> (
"throwOnReorthogFault",
595 defaultParams->get<
bool> (
"throwOnReorthogFault"));
596 blockReorthogThreshold_ =
597 theParams->get<M> (
"blockReorthogThreshold",
598 defaultParams->get<M> (
"blockReorthogThreshold"));
599 relativeRankTolerance_ =
600 theParams->get<M> (
"relativeRankTolerance",
601 defaultParams->get<M> (
"relativeRankTolerance"));
602 forceNonnegativeDiagonal_ =
603 theParams->get<
bool> (
"forceNonnegativeDiagonal",
604 defaultParams->get<
bool> (
"forceNonnegativeDiagonal"));
608 if (! theParams->isSublist (
"TSQR implementation")) {
609 theParams->set (
"TSQR implementation",
610 defaultParams->sublist (
"TSQR implementation"));
612 tsqrParams = sublist (theParams,
"TSQR implementation",
true);
616 tsqrAdaptor_.setParameterList (tsqrParams);
619 setMyParamList (theParams);
622 template<
class Scalar,
class MV>
625 const std::string& label) :
629 randomizeNullSpace_ (true),
630 reorthogonalizeBlocks_ (true),
631 throwOnReorthogFault_ (false),
632 blockReorthogThreshold_ (0),
633 relativeRankTolerance_ (0),
634 forceNonnegativeDiagonal_ (false)
639 template<
class Scalar,
class MV>
645 randomizeNullSpace_ (true),
646 reorthogonalizeBlocks_ (true),
647 throwOnReorthogFault_ (false),
648 blockReorthogThreshold_ (0),
649 relativeRankTolerance_ (0),
650 forceNonnegativeDiagonal_ (false)
655 template<
class Scalar,
class MV>
658 norm (
const MV& X, std::vector<magnitude_type>& normVec)
const
660 const int numCols = MVT::GetNumberVecs (X);
663 if (normVec.size() <
static_cast<size_t>(numCols))
664 normVec.resize (numCols);
665 MVT::MvNorm (X, normVec);
668 template<
class Scalar,
class MV>
674 int ncols_X, num_Q_blocks, ncols_Q_total;
675 checkProjectionDims (ncols_X, num_Q_blocks, ncols_Q_total, X, Q);
679 if (ncols_X == 0 || num_Q_blocks == 0 || ncols_Q_total == 0)
683 allocateProjectionCoefficients (C, Q, X,
true);
687 std::vector<magnitude_type> columnNormsBefore (ncols_X, magnitude_type(0));
688 if (reorthogonalizeBlocks_)
689 MVT::MvNorm (X, columnNormsBefore);
693 rawProject (X, Q, C);
697 if (reorthogonalizeBlocks_)
699 std::vector<magnitude_type> columnNormsAfter (ncols_X, magnitude_type(0));
700 MVT::MvNorm (X, columnNormsAfter);
703 const magnitude_type relThres = blockReorthogThreshold();
709 bool reorthogonalize =
false;
710 for (
int j = 0; j < ncols_X; ++j)
711 if (columnNormsAfter[j] < relThres * columnNormsBefore[j])
713 reorthogonalize =
true;
720 allocateProjectionCoefficients (C2, Q, X,
false);
724 rawProject (X, Q, C2);
726 for (
int k = 0; k < num_Q_blocks; ++k)
734 template<
class Scalar,
class MV>
744 const int numCols = MVT::GetNumberVecs (X);
753 return normalizeOne (X, B);
783 MVT::GetGlobalLength(*Q_) != MVT::GetGlobalLength(X) ||
784 numCols > MVT::GetNumberVecs (*Q_)) {
785 Q_ = MVT::Clone (X, numCols);
794 if (MVT::GetNumberVecs(*Q_) == numCols) {
795 return normalizeImpl (X, *Q_, B,
false);
797 RCP<MV> Q_view = MVT::CloneViewNonConst (*Q_, Range1D(0, numCols-1));
798 return normalizeImpl (X, *Q_view, B,
false);
802 template<
class Scalar,
class MV>
808 const bool attemptToRecycle)
const
810 const int num_Q_blocks = Q.size();
811 const int ncols_X = MVT::GetNumberVecs (X);
813 if (attemptToRecycle)
815 for (
int i = 0; i < num_Q_blocks; ++i)
817 const int ncols_Qi = MVT::GetNumberVecs (*Q[i]);
821 C[i] =
rcp (
new mat_type (ncols_Qi, ncols_X));
824 mat_type& Ci = *C[i];
825 if (Ci.numRows() != ncols_Qi || Ci.numCols() != ncols_X)
826 Ci.shape (ncols_Qi, ncols_X);
828 Ci.putScalar (SCT::zero());
834 for (
int i = 0; i < num_Q_blocks; ++i)
836 const int ncols_Qi = MVT::GetNumberVecs (*Q[i]);
837 C[i] =
rcp (
new mat_type (ncols_Qi, ncols_X));
842 template<
class Scalar,
class MV>
847 const int numVecs = MVT::GetNumberVecs(X);
850 }
else if (numVecs == 1) {
857 const int rank = normalizeOne (X, B);
859 RCP<MV> Q_0 = MVT::CloneViewNonConst (Q, Range1D(0,0));
860 MVT::Assign (X, *Q_0);
866 return normalizeImpl (X, Q, B,
true);
870 template<
class Scalar,
class MV>
875 const bool outOfPlace,
887 std::invalid_argument,
888 "Belos::TsqrOrthoManagerImpl::"
889 "projectAndNormalizeOutOfPlace(...):"
890 "X_out has " << MVT::GetNumberVecs(X_out)
891 <<
" columns, but X_in has "
892 << MVT::GetNumberVecs(X_in) <<
" columns.");
896 int ncols_X, num_Q_blocks, ncols_Q_total;
897 checkProjectionDims (ncols_X, num_Q_blocks, ncols_Q_total, X_in, Q);
904 if (num_Q_blocks == 0 || ncols_Q_total == 0) {
906 return normalizeOutOfPlace (X_in, X_out, B);
908 return normalize (X_in, B);
915 allocateProjectionCoefficients (C, Q, X_in,
true);
920 std::vector<magnitude_type> normsBeforeFirstPass (ncols_X, SCTM::zero());
921 if (reorthogonalizeBlocks_) {
922 MVT::MvNorm (X_in, normsBeforeFirstPass);
926 rawProject (X_in, Q, C);
939 B_out =
rcp (
new mat_type (ncols_X, ncols_X));
943 std::invalid_argument,
944 "normalizeOne: Input matrix B must be at "
945 "least " << ncols_X <<
" x " << ncols_X
946 <<
", but is instead " << B->numRows()
947 <<
" x " << B->numCols() <<
".");
957 const int firstPassRank = outOfPlace ?
958 normalizeOutOfPlace (X_in, X_out, B_out) :
959 normalize (X_in, B_out);
968 int rank = firstPassRank;
984 if (firstPassRank < ncols_X && randomizeNullSpace_) {
985 const int numNullSpaceCols = ncols_X - firstPassRank;
986 const Range1D nullSpaceIndices (firstPassRank, ncols_X - 1);
990 for (
int k = 0; k < num_Q_blocks; ++k) {
991 const int numColsQk = MVT::GetNumberVecs(*Q[k]);
992 C_null[k] =
rcp (
new mat_type (numColsQk, numNullSpaceCols));
995 RCP<mat_type> B_null (
new mat_type (numNullSpaceCols, numNullSpaceCols));
997 int randomVectorsRank;
1001 RCP<MV> X_out_null = MVT::CloneViewNonConst (X_out, nullSpaceIndices);
1006 RCP<MV> X_in_null = MVT::CloneViewNonConst (X_in, nullSpaceIndices);
1007 MVT::Assign (*X_out_null, *X_in_null);
1010 rawProject (*X_in_null, Q, C_null);
1011 randomVectorsRank = normalizeOutOfPlace (*X_in_null, *X_out_null, B_null);
1015 RCP<MV> X_null = MVT::CloneViewNonConst (X_in, nullSpaceIndices);
1018 rawProject (*X_null, Q, C_null);
1019 randomVectorsRank = normalize (*X_null, B_null);
1027 "Belos::TsqrOrthoManagerImpl::projectAndNormalize"
1028 "OutOfPlace(): After projecting and normalizing the "
1029 "random vectors (used to replace the null space "
1030 "basis vectors from normalizing X), they have rank "
1031 << randomVectorsRank <<
", but should have full "
1032 "rank " << numNullSpaceCols <<
".");
1037 if (reorthogonalizeBlocks_) {
1040 std::vector<magnitude_type>
1041 normsAfterFirstPass (firstPassRank, SCTM::zero());
1042 std::vector<magnitude_type>
1043 normsAfterSecondPass (firstPassRank, SCTM::zero());
1058 for (
int j = 0; j < firstPassRank; ++j) {
1059 const Scalar*
const B_j = &(*B_out)(0,j);
1062 normsAfterFirstPass[j] = blas.
NRM2 (firstPassRank, B_j, 1);
1066 bool reorthogonalize =
false;
1067 for (
int j = 0; j < firstPassRank; ++j) {
1074 const magnitude_type curThreshold =
1075 blockReorthogThreshold() * normsBeforeFirstPass[j];
1076 if (normsAfterFirstPass[j] < curThreshold) {
1077 reorthogonalize =
true;
1092 bool reorthogFault =
false;
1094 std::vector<int> faultIndices;
1095 if (reorthogonalize) {
1103 MVT::Assign (X_out, X_in);
1109 allocateProjectionCoefficients (C2, Q, X_in,
false);
1114 rawProject (X_in, Q, C2);
1117 RCP<mat_type> B2 (
new mat_type (ncols_X, ncols_X));
1120 const int secondPassRank = outOfPlace ?
1121 normalizeOutOfPlace (X_in, X_out, B2) :
1122 normalize (X_in, B2);
1123 rank = secondPassRank;
1128 mat_type B_copy (Copy, *B_out, B_out->numRows(), B_out->numCols());
1130 const int err = B_out->multiply (NO_TRANS, NO_TRANS, SCT::one(),
1131 *B2, B_copy, SCT::zero());
1133 "Teuchos::SerialDenseMatrix::multiply "
1134 "returned err = " << err <<
" != 0");
1138 for (
int k = 0; k < num_Q_blocks; ++k) {
1139 mat_type C_k_copy (Copy, *C[k], C[k]->numRows(), C[k]->numCols());
1142 const int err2 = C[k]->multiply (NO_TRANS, NO_TRANS, SCT::one(),
1143 *C2[k], B_copy, SCT::one());
1145 "Teuchos::SerialDenseMatrix::multiply "
1146 "returned err = " << err <<
" != 0");
1151 for (
int j = 0; j < rank; ++j) {
1152 const Scalar*
const B2_j = &(*B2)(0,j);
1153 normsAfterSecondPass[j] = blas.
NRM2 (rank, B2_j, 1);
1158 reorthogFault =
false;
1159 for (
int j = 0; j < rank; ++j) {
1160 const magnitude_type relativeLowerBound =
1161 blockReorthogThreshold() * normsAfterFirstPass[j];
1162 if (normsAfterSecondPass[j] < relativeLowerBound) {
1163 reorthogFault =
true;
1164 faultIndices.push_back (j);
1169 if (reorthogFault) {
1170 if (throwOnReorthogFault_) {
1171 raiseReorthogFault (normsAfterFirstPass,
1172 normsAfterSecondPass,
1181 "TsqrOrthoManagerImpl has not yet implemented"
1182 " recovery from an orthogonalization fault.");
1190 template<
class Scalar,
class MV>
1192 TsqrOrthoManagerImpl<Scalar, MV>::
1193 raiseReorthogFault (
const std::vector<magnitude_type>& normsAfterFirstPass,
1194 const std::vector<magnitude_type>& normsAfterSecondPass,
1195 const std::vector<int>& faultIndices)
1198 typedef std::vector<int>::size_type size_type;
1199 std::ostringstream os;
1201 os <<
"Orthogonalization fault at the following column(s) of X:" << endl;
1202 os <<
"Column\tNorm decrease factor" << endl;
1203 for (size_type k = 0; k < faultIndices.size(); ++k)
1205 const int index = faultIndices[k];
1206 const magnitude_type decreaseFactor =
1207 normsAfterSecondPass[index] / normsAfterFirstPass[index];
1208 os << index <<
"\t" << decreaseFactor << endl;
1210 throw TsqrOrthoFault (os.str());
1213 template<
class Scalar,
class MV>
1218 using Teuchos::parameterList;
1221 if (defaultParams_.is_null()) {
1222 RCP<ParameterList> params = parameterList (
"TsqrOrthoManagerImpl");
1226 params->set (
"TSQR implementation", *(tsqrAdaptor_.getValidParameters()),
1227 "TSQR implementation parameters.");
1231 const bool defaultRandomizeNullSpace =
true;
1232 params->set (
"randomizeNullSpace", defaultRandomizeNullSpace,
1233 "Whether to fill in null space vectors with random data.");
1235 const bool defaultReorthogonalizeBlocks =
true;
1236 params->set (
"reorthogonalizeBlocks", defaultReorthogonalizeBlocks,
1237 "Whether to do block reorthogonalization as necessary.");
1241 const magnitude_type defaultBlockReorthogThreshold =
1242 magnitude_type(10) * SCTM::squareroot (SCTM::eps());
1243 params->set (
"blockReorthogThreshold", defaultBlockReorthogThreshold,
1244 "If reorthogonalizeBlocks==true, and if the norm of "
1245 "any column within a block decreases by this much or "
1246 "more after orthogonalization, we reorthogonalize.");
1250 const magnitude_type defaultRelativeRankTolerance =
1251 Teuchos::as<magnitude_type>(10) * SCTM::eps();
1256 params->set (
"relativeRankTolerance", defaultRelativeRankTolerance,
1257 "Relative tolerance to determine the numerical rank of a "
1258 "block when normalizing.");
1262 const bool defaultThrowOnReorthogFault =
true;
1263 params->set (
"throwOnReorthogFault", defaultThrowOnReorthogFault,
1264 "Whether to throw an exception if an orthogonalization "
1265 "fault occurs. This only matters if reorthogonalization "
1266 "is enabled (reorthogonalizeBlocks==true).");
1268 const bool defaultForceNonnegativeDiagonal =
false;
1269 params->set (
"forceNonnegativeDiagonal", defaultForceNonnegativeDiagonal,
1270 "Whether to force the R factor produced by the normalization "
1271 "step to have a nonnegative diagonal.");
1273 defaultParams_ = params;
1275 return defaultParams_;
1278 template<
class Scalar,
class MV>
1286 RCP<const ParameterList> defaultParams = getValidParameters();
1288 RCP<ParameterList> params =
rcp (
new ParameterList (*defaultParams));
1297 const bool randomizeNullSpace =
false;
1298 params->set (
"randomizeNullSpace", randomizeNullSpace);
1299 const bool reorthogonalizeBlocks =
false;
1300 params->set (
"reorthogonalizeBlocks", reorthogonalizeBlocks);
1305 template<
class Scalar,
class MV>
1317 tsqrAdaptor_.factorExplicit (X, Q, B, forceNonnegativeDiagonal_);
1320 rank = tsqrAdaptor_.revealRank (Q, B, relativeRankTolerance_);
1321 }
catch (std::exception& e) {
1322 throw TsqrOrthoError (e.what());
1327 template<
class Scalar,
class MV>
1329 TsqrOrthoManagerImpl<Scalar, MV>::
1330 normalizeOne (MV& X,
1338 B_out =
rcp (
new mat_type (1, 1));
1340 const int numRows = B->
numRows();
1341 const int numCols = B->
numCols();
1343 std::invalid_argument,
1344 "normalizeOne: Input matrix B must be at "
1345 "least 1 x 1, but is instead " << numRows
1346 <<
" x " << numCols <<
".");
1352 std::vector<magnitude_type> theNorm (1, SCTM::zero());
1353 MVT::MvNorm (X, theNorm);
1354 (*B_out)(0,0) = theNorm[0];
1368 if (theNorm[0] == SCTM::zero()) {
1371 if (randomizeNullSpace_) {
1373 MVT::MvNorm (X, theNorm);
1374 if (theNorm[0] == SCTM::zero()) {
1379 throw TsqrOrthoError(
"normalizeOne: a supposedly random "
1380 "vector has norm zero!");
1385 const Scalar alpha = SCT::one() / theNorm[0];
1386 MVT::MvScale (X, alpha);
1393 const Scalar alpha = SCT::one() / theNorm[0];
1394 MVT::MvScale (X, alpha);
1400 template<
class Scalar,
class MV>
1402 TsqrOrthoManagerImpl<Scalar, MV>::
1408 const int num_Q_blocks = Q.size();
1409 for (
int i = 0; i < num_Q_blocks; ++i)
1417 mat_type& Ci = *C[i];
1418 const MV& Qi = *Q[i];
1419 innerProd (Qi, X, Ci);
1420 MVT::MvTimesMatAddMv (-SCT::one(), Qi, Ci, SCT::one(), X);
1425 template<
class Scalar,
class MV>
1427 TsqrOrthoManagerImpl<Scalar, MV>::
1433 innerProd (*Q, X, *C);
1434 MVT::MvTimesMatAddMv (-SCT::one(), *Q, *C, SCT::one(), X);
1437 template<
class Scalar,
class MV>
1439 TsqrOrthoManagerImpl<Scalar, MV>::
1440 normalizeImpl (MV& X,
1443 const bool outOfPlace)
1449 using Teuchos::tuple;
1454 const bool extraDebug =
false;
1456 const int numCols = MVT::GetNumberVecs (X);
1464 std::invalid_argument,
1465 "TsqrOrthoManagerImpl::normalizeImpl(X,Q,B): Q has "
1466 << MVT::GetNumberVecs(Q) <<
" columns. This is too "
1467 "few, since X has " << numCols <<
" columns.");
1471 RCP<MV> Q_view = MVT::CloneViewNonConst (Q, Range1D(0, numCols-1));
1479 B_out =
rcp (
new mat_type (numCols, numCols));
1483 std::invalid_argument,
1484 "normalizeOne: Input matrix B must be at "
1485 "least " << numCols <<
" x " << numCols
1486 <<
", but is instead " << B->
numRows()
1487 <<
" x " << B->
numCols() <<
".");
1494 std::vector<magnitude_type> norms (numCols);
1495 MVT::MvNorm (X, norms);
1496 cerr <<
"Column norms of X before orthogonalization: ";
1497 typedef typename std::vector<magnitude_type>::const_iterator iter_type;
1498 for (iter_type iter = norms.begin(); iter != norms.end(); ++iter) {
1500 if (iter+1 != norms.end())
1514 const int rank = rawNormalize (X, *Q_view, *B_out);
1525 std::vector<magnitude_type> norms (numCols);
1526 MVT::MvNorm (*Q_view, norms);
1527 cerr <<
"Column norms of Q_view after orthogonalization: ";
1528 for (
typename std::vector<magnitude_type>::const_iterator iter = norms.begin();
1529 iter != norms.end(); ++iter) {
1531 if (iter+1 != norms.end())
1536 "Belos::TsqrOrthoManagerImpl::normalizeImpl: "
1537 "rawNormalize() returned rank = " << rank <<
" for a "
1538 "matrix X with " << numCols <<
" columns. Please report"
1539 " this bug to the Belos developers.");
1540 if (extraDebug && rank == 0) {
1543 const mat_type& B_ref = *B;
1544 std::vector<magnitude_type> norms (B_ref.numCols());
1545 for (
typename mat_type::ordinalType j = 0; j < B_ref.numCols(); ++j) {
1546 typedef typename mat_type::scalarType mat_scalar_type;
1547 mat_scalar_type sumOfSquares = ScalarTraits<mat_scalar_type>::zero();
1548 for (
typename mat_type::ordinalType i = 0; i <= j; ++i) {
1549 const mat_scalar_type B_ij =
1550 ScalarTraits<mat_scalar_type>::magnitude (B_ref(i,j));
1551 sumOfSquares += B_ij*B_ij;
1553 norms[j] = ScalarTraits<mat_scalar_type>::squareroot (sumOfSquares);
1557 cerr <<
"Norms of columns of B after orthogonalization: ";
1558 for (
typename mat_type::ordinalType j = 0; j < B_ref.numCols(); ++j) {
1560 if (j != B_ref.numCols() - 1)
1568 if (rank == numCols || ! randomizeNullSpace_) {
1572 MVT::Assign (*Q_view, X);
1577 if (randomizeNullSpace_ && rank < numCols) {
1584 const int nullSpaceNumCols = numCols - rank;
1587 Range1D nullSpaceIndices (rank, numCols-1);
1594 RCP<MV> Q_null = MVT::CloneViewNonConst (*Q_view, nullSpaceIndices);
1596 MVT::MvRandom (*Q_null);
1602 std::vector<magnitude_type> norms (MVT::GetNumberVecs(*Q_null));
1603 MVT::MvNorm (*Q_null, norms);
1605 bool anyZero =
false;
1606 typedef typename std::vector<magnitude_type>::const_iterator iter_type;
1607 for (iter_type it = norms.begin(); it != norms.end(); ++it) {
1608 if (*it == SCTM::zero()) {
1613 std::ostringstream os;
1614 os <<
"TsqrOrthoManagerImpl::normalizeImpl: "
1615 "We are being asked to randomize the null space, for a matrix "
1616 "with " << numCols <<
" columns and reported column rank "
1617 << rank <<
". The inclusive range of columns to fill with "
1618 "random data is [" << nullSpaceIndices.lbound() <<
","
1619 << nullSpaceIndices.ubound() <<
"]. After filling the null "
1620 "space vectors with random numbers, at least one of the vectors"
1621 " has norm zero. Here are the norms of all the null space "
1623 for (iter_type it = norms.begin(); it != norms.end(); ++it) {
1625 if (it+1 != norms.end())
1628 os <<
"].) There is a tiny probability that this could happen "
1629 "randomly, but it is likely a bug. Please report it to the "
1630 "Belos developers, especially if you are able to reproduce the "
1643 RCP<const MV> Q_col = MVT::CloneView (*Q_view, Range1D(0, rank-1));
1648 mat_ptr C_null (
new mat_type (rank, nullSpaceNumCols));
1649 rawProject (*Q_null, Q_col, C_null);
1658 RCP<MV> X_null = MVT::CloneViewNonConst (X, nullSpaceIndices);
1661 mat_type B_null (nullSpaceNumCols, nullSpaceNumCols);
1663 const int nullSpaceBasisRank = rawNormalize (*Q_null, *X_null, B_null);
1677 if (nullSpaceBasisRank < nullSpaceNumCols) {
1678 std::vector<magnitude_type> norms (MVT::GetNumberVecs(*X_null));
1679 MVT::MvNorm (*X_null, norms);
1680 std::ostringstream os;
1681 os <<
"TsqrOrthoManagerImpl::normalizeImpl: "
1682 <<
"We are being asked to randomize the null space, "
1683 <<
"for a matrix with " << numCols <<
" columns and "
1684 <<
"column rank " << rank <<
". After projecting and "
1685 <<
"normalizing the generated random vectors, they "
1686 <<
"only have rank " << nullSpaceBasisRank <<
". They"
1687 <<
" should have full rank " << nullSpaceNumCols
1688 <<
". (The inclusive range of columns to fill with "
1689 <<
"random data is [" << nullSpaceIndices.lbound()
1690 <<
"," << nullSpaceIndices.ubound() <<
"]. The "
1691 <<
"column norms of the resulting Q factor are: [";
1692 for (
typename std::vector<magnitude_type>::size_type k = 0;
1693 k < norms.size(); ++k) {
1695 if (k != norms.size()-1) {
1699 os <<
"].) There is a tiny probability that this could "
1700 <<
"happen randomly, but it is likely a bug. Please "
1701 <<
"report it to the Belos developers, especially if "
1702 <<
"you are able to reproduce the behavior.";
1705 TsqrOrthoError, os.str());
1715 MVT::Assign (*X_null, *Q_null);
1716 }
else if (rank > 0) {
1718 RCP<const MV> Q_col = MVT::CloneView (*Q_view, Range1D(0, rank-1));
1719 RCP<MV> X_col = MVT::CloneViewNonConst (X, Range1D(0, rank-1));
1720 MVT::Assign (*Q_col, *X_col);
1727 template<
class Scalar,
class MV>
1729 TsqrOrthoManagerImpl<Scalar, MV>::
1730 checkProjectionDims (
int& ncols_X,
1742 int the_ncols_X, the_num_Q_blocks, the_ncols_Q_total;
1743 the_num_Q_blocks = Q.size();
1744 the_ncols_X = MVT::GetNumberVecs (X);
1747 the_ncols_Q_total = 0;
1752 typedef typename ArrayView<RCP<const MV> >::const_iterator iter_type;
1753 for (iter_type it = Q.begin(); it != Q.end(); ++it) {
1754 const MV& Qi = **it;
1755 the_ncols_Q_total += MVT::GetNumberVecs (Qi);
1759 ncols_X = the_ncols_X;
1760 num_Q_blocks = the_num_Q_blocks;
1761 ncols_Q_total = the_ncols_Q_total;
1766 #endif // __AnasaziTsqrOrthoManagerImpl_hpp
bool is_null(const boost::shared_ptr< T > &p)
TSQR-based OrthoManager subclass implementation.
Declaration of basic traits for the multivector type.
T & get(const std::string &name, T def_value)
int projectAndNormalize(MV &X, Teuchos::Array< mat_ptr > C, mat_ptr B, Teuchos::ArrayView< Teuchos::RCP< const MV > > Q)
Project X against Q and normalize X.
#define TEUCHOS_TEST_FOR_EXCEPTION(throw_exception_test, Exception, msg)
Teuchos::SerialDenseMatrix< int, Scalar > mat_type
ScalarTraits< ScalarType >::magnitudeType NRM2(const OrdinalType &n, const ScalarType *x, const OrdinalType &incx) const
magnitude_type blockReorthogThreshold() const
magnitude_type orthonormError(const MV &X) const
Return .
void innerProd(const MV &X, const MV &Y, mat_type &Z) const
Euclidean inner product.
void norm(const MV &X, std::vector< magnitude_type > &normvec) const
ScalarTraits< ScalarType >::magnitudeType normFrobenius() const
void setParameterList(const Teuchos::RCP< Teuchos::ParameterList > ¶ms)
Set parameters from the given parameter list.
TsqrOrthoManagerImpl(const Teuchos::RCP< Teuchos::ParameterList > ¶ms, const std::string &label)
Constructor (that sets user-specified parameters).
TsqrOrthoManager(Impl) error.
void setLabel(const std::string &label)
Set the label for timers.
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
Templated virtual class for providing orthogonalization/orthonormalization methods.
Traits class which defines basic operations on multivectors.
static void MvTransMv(const ScalarType alpha, const MV &A, const MV &B, Teuchos::SerialDenseMatrix< int, ScalarType > &C)
Compute C := alpha * A^H B.
const std::string & getLabel() const
Get the label for timers (if timers are enabled).
Teuchos::RCP< const Teuchos::ParameterList > getFastParameters()
Get "fast" parameters for TsqrOrthoManagerImpl.
void project(MV &X, Teuchos::Array< mat_ptr > C, Teuchos::ArrayView< Teuchos::RCP< const MV > > Q)
Compute and .
Anasazi header file which uses auto-configuration information to include necessary C++ headers...
void resize(size_type new_size, const value_type &x=value_type())
Exception thrown to signal error in an orthogonalization manager method.
int projectAndNormalizeOutOfPlace(MV &X_in, MV &X_out, Teuchos::Array< mat_ptr > C, mat_ptr B, Teuchos::ArrayView< Teuchos::RCP< const MV > > Q)
Project and normalize X_in into X_out; overwrite X_in.
int normalizeOutOfPlace(MV &X, MV &Q, mat_ptr B)
Normalize X into Q*B, overwriting X.
static int GetNumberVecs(const MV &mv)
Obtain the number of vectors in mv.
OrdinalType numCols() const
Teuchos::RCP< const Teuchos::ParameterList > getValidParameters() const
Default valid parameter list.
magnitude_type relativeRankTolerance() const
magnitude_type orthogError(const MV &X1, const MV &X2) const
Return the Frobenius norm of the inner product of X1 with itself.
int normalize(MV &X, mat_ptr B)
Orthogonalize the columns of X in place.
OrdinalType numRows() const