Intrepid
Macros | Functions
example_11.cpp File Reference

Construction of Laplace operator on a uniform hexahedral mesh using arbitrary-degree elements. This is the second most naive implementation wherein we form the stiffness matrix on each cell by quadrature, but we do preallocate the global matrix graph before assembling. More...

#include "Intrepid_FunctionSpaceTools.hpp"
#include "Intrepid_FieldContainer.hpp"
#include "Intrepid_CellTools.hpp"
#include "Intrepid_HGRAD_HEX_Cn_FEM.hpp"
#include "Intrepid_DefaultCubatureFactory.hpp"
#include "Intrepid_Utils.hpp"
#include "Epetra_Time.h"
#include "Epetra_Map.h"
#include "Epetra_FEVector.h"
#include "Epetra_FECrsMatrix.h"
#include "Epetra_SerialComm.h"
#include "Teuchos_oblackholestream.hpp"
#include "Teuchos_RCP.hpp"
#include "Shards_CellTopology.hpp"
#include "EpetraExt_MultiVectorOut.h"

Go to the source code of this file.

Functions

int main (int argc, char *argv[])
 

Detailed Description

Construction of Laplace operator on a uniform hexahedral mesh using arbitrary-degree elements. This is the second most naive implementation wherein we form the stiffness matrix on each cell by quadrature, but we do preallocate the global matrix graph before assembling.

div grad u = f in Omega
u = 0 on Gamma 

Discrete linear system for nodal coefficients(x):
    
Kx = b

K - HGrad stiffness matrix
b - right hand side vector 
Author
Created by P. Bochev, R. Kirby, D. Ridzal and K. Peterson.
Remarks
Usage
./Intrepid_example_Drivers_Example_11.exe N verbose
int degree          - polynomial degree
int NX              - num intervals in x direction (assumed box domain, 0,1)
int NY              - num intervals in x direction (assumed box domain, 0,1)
int NZ              - num intervals in x direction (assumed box domain, 0,1)
verbose (optional)  - any character, indicates verbose output
Sample command line
./Intrepid_example_Drivers_Example_11.exe 2 10 10 10

Definition in file example_11.cpp.