Intrepid
|
Example building stiffness matrix for a Poisson equation using nodal (Hgrad) elements on squares. This shows how to use the local-global mapping to preallocate the matrix graph. This leads to an improvement in the time it takes to construct the global matrix. More...
#include "Intrepid_FunctionSpaceTools.hpp"
#include "Intrepid_FieldContainer.hpp"
#include "Intrepid_CellTools.hpp"
#include "Intrepid_ArrayTools.hpp"
#include "Intrepid_HGRAD_QUAD_Cn_FEM.hpp"
#include "Intrepid_RealSpaceTools.hpp"
#include "Intrepid_DefaultCubatureFactory.hpp"
#include "Intrepid_Utils.hpp"
#include "Epetra_Time.h"
#include "Epetra_Map.h"
#include "Epetra_FECrsMatrix.h"
#include "Epetra_FEVector.h"
#include "Epetra_SerialComm.h"
#include "Teuchos_oblackholestream.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_BLAS.hpp"
#include "Shards_CellTopology.hpp"
#include "EpetraExt_RowMatrixOut.h"
#include "EpetraExt_MultiVectorOut.h"
Go to the source code of this file.
Example building stiffness matrix for a Poisson equation using nodal (Hgrad) elements on squares. This shows how to use the local-global mapping to preallocate the matrix graph. This leads to an improvement in the time it takes to construct the global matrix.
div grad u = f in Omega u = 0 on Gamma Discrete linear system for nodal coefficients(x): Kx = b K - HGrad stiffness matrix b - right hand side vector
./Intrepid_example_Drivers_Example_05.exe N verbose int NX - num intervals in x direction (assumed box domain, 0,1) int NY - num intervals in x direction (assumed box domain, 0,1) verbose (optional) - any character, indicates verbose output
Definition in file example_07.cpp.