Intrepid
Macros | Functions
example_06.cpp File Reference

Matrix-free application of the Laplace stiffness matrix for polynomials of degree d on an NX x NY mesh. We are using a reference element stiffness matrix and level 3 BLAS for the application, but not using any tensor-product decomposition. More...

#include "Intrepid_FunctionSpaceTools.hpp"
#include "Intrepid_FieldContainer.hpp"
#include "Intrepid_CellTools.hpp"
#include "Intrepid_ArrayTools.hpp"
#include "Intrepid_HGRAD_QUAD_Cn_FEM.hpp"
#include "Intrepid_RealSpaceTools.hpp"
#include "Intrepid_DefaultCubatureFactory.hpp"
#include "Intrepid_Utils.hpp"
#include "Epetra_Time.h"
#include "Epetra_Map.h"
#include "Epetra_FEVector.h"
#include "Epetra_SerialComm.h"
#include "Teuchos_oblackholestream.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_BLAS_types.hpp"
#include "Shards_CellTopology.hpp"
#include "EpetraExt_MultiVectorOut.h"

Go to the source code of this file.

Functions

int main (int argc, char *argv[])
 

Detailed Description

Matrix-free application of the Laplace stiffness matrix for polynomials of degree d on an NX x NY mesh. We are using a reference element stiffness matrix and level 3 BLAS for the application, but not using any tensor-product decomposition.

         div grad u = f in Omega
                  u = 0 on Gamma 

 Discrete linear system for nodal coefficients(x):
    
             Kx = b

        K - HGrad stiffness matrix
        b - right hand side vector 
Author
Created by P. Bochev, R. Kirby, D. Ridzal and K. Peterson.
Remarks
Usage
 ./Intrepid_example_Drivers_Example_06.exe N verbose
    int degree          - polynomial degree
    int NX              - num intervals in x direction (assumed box domain, 0,1)
    int NY              - num intervals in x direction (assumed box domain, 0,1)
    verbose (optional)  - any character, indicates verbose output
Sample command line
./Intrepid_example_Drivers_Example_06.exe 2 10 10

Definition in file example_06.cpp.