|
Intrepid
|
Demonstrate diagonalized mass matrices for H(grad) elements in 1d using Gauss-Legendre quadrature. More...
#include "Intrepid_FunctionSpaceTools.hpp"#include "Intrepid_FieldContainer.hpp"#include "Intrepid_CellTools.hpp"#include "Intrepid_ArrayTools.hpp"#include "Intrepid_HGRAD_QUAD_Cn_FEM.hpp"#include "Intrepid_RealSpaceTools.hpp"#include "Intrepid_DefaultCubatureFactory.hpp"#include "Intrepid_Utils.hpp"#include "Epetra_Time.h"#include "Epetra_Map.h"#include "Epetra_FECrsMatrix.h"#include "Epetra_FEVector.h"#include "Epetra_SerialComm.h"#include "Teuchos_oblackholestream.hpp"#include "Teuchos_RCP.hpp"#include "Teuchos_BLAS.hpp"#include "Shards_CellTopology.hpp"#include "EpetraExt_RowMatrixOut.h"#include "EpetraExt_MultiVectorOut.h"Go to the source code of this file.
Demonstrate diagonalized mass matrices for H(grad) elements in 1d using Gauss-Legendre quadrature.
Example building stiffness matrix and right hand side for a Poisson equation using nodal (Hgrad) elements on squares. This uses higher order elements and builds a single reference stiffness matrix that is used for each element. The global matrix is constructed by specifying an upper bound on the number of nonzeros per row, but not preallocating the graph.
./Intrepid_example_Drivers_Example_03.exe max_deg verbose
int min_deg - beginning polynomial degree to check
int max_deg - maximum polynomial degree to check
verbose (optional) - any character, indicates verbose output div grad u = f in Omega
u = 0 on Gamma
Discrete linear system for nodal coefficients(x):
Kx = b
K - HGrad stiffness matrix
b - right hand side vector
./Intrepid_example_Drivers_Example_05.exe N verbose
int deg - polynomial degree
int NX - num intervals in x direction (assumed box domain, 0,1)
int NY - num intervals in x direction (assumed box domain, 0,1)
verbose (optional) - any character, indicates verbose outputDefinition in file example_05.cpp.
1.8.5