Intrepid
|
Demonstrate diagonalized mass matrices for H(grad) elements in 1d using Gauss-Legendre quadrature. More...
#include "Intrepid_FunctionSpaceTools.hpp"
#include "Intrepid_FieldContainer.hpp"
#include "Intrepid_CellTools.hpp"
#include "Intrepid_ArrayTools.hpp"
#include "Intrepid_HGRAD_QUAD_Cn_FEM.hpp"
#include "Intrepid_RealSpaceTools.hpp"
#include "Intrepid_DefaultCubatureFactory.hpp"
#include "Intrepid_Utils.hpp"
#include "Epetra_Time.h"
#include "Epetra_Map.h"
#include "Epetra_FECrsMatrix.h"
#include "Epetra_FEVector.h"
#include "Epetra_SerialComm.h"
#include "Teuchos_oblackholestream.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_BLAS.hpp"
#include "Shards_CellTopology.hpp"
#include "EpetraExt_RowMatrixOut.h"
#include "EpetraExt_MultiVectorOut.h"
Go to the source code of this file.
Demonstrate diagonalized mass matrices for H(grad) elements in 1d using Gauss-Legendre quadrature.
Example building stiffness matrix and right hand side for a Poisson equation using nodal (Hgrad) elements on squares. This uses higher order elements and builds a single reference stiffness matrix that is used for each element. The global matrix is constructed by specifying an upper bound on the number of nonzeros per row, but not preallocating the graph.
./Intrepid_example_Drivers_Example_03.exe max_deg verbose int min_deg - beginning polynomial degree to check int max_deg - maximum polynomial degree to check verbose (optional) - any character, indicates verbose output
div grad u = f in Omega u = 0 on Gamma Discrete linear system for nodal coefficients(x): Kx = b K - HGrad stiffness matrix b - right hand side vector
./Intrepid_example_Drivers_Example_05.exe N verbose int deg - polynomial degree int NX - num intervals in x direction (assumed box domain, 0,1) int NY - num intervals in x direction (assumed box domain, 0,1) verbose (optional) - any character, indicates verbose output
Definition in file example_05.cpp.