53 #include "Teuchos_oblackholestream.hpp"
54 #include "Teuchos_RCP.hpp"
55 #include "Teuchos_GlobalMPISession.hpp"
57 using namespace Intrepid;
68 polydeg[0] = xDeg; polydeg[1] = yDeg; polydeg[2] = zDeg;
70 val *= std::pow(p(i),polydeg[i]);
79 double computeIntegral(shards::CellTopology & cellTopology,
int cubDegree,
int xDeg,
int yDeg,
int zDeg) {
82 Teuchos::RCP<Cubature<double> > myCub = cubFactory.
create(cellTopology, cubDegree);
85 int cubDim = myCub->getDimension();
86 int numCubPoints = myCub->getNumPoints();
92 myCub->getCubature(cubPoints, cubWeights);
94 for (
int i=0; i<numCubPoints; i++) {
95 for (
int j=0; j<cubDim; j++) {
96 point(j) = cubPoints(i,j);
98 val += computeMonomial(point, xDeg, yDeg, zDeg)*cubWeights(i);
105 int main(
int argc,
char *argv[]) {
107 Teuchos::GlobalMPISession mpiSession(&argc, &argv);
111 int iprint = argc - 1;
112 Teuchos::RCP<std::ostream> outStream;
113 Teuchos::oblackholestream bhs;
115 outStream = Teuchos::rcp(&std::cout,
false);
117 outStream = Teuchos::rcp(&bhs,
false);
120 Teuchos::oblackholestream oldFormatState;
121 oldFormatState.copyfmt(std::cout);
124 <<
"===============================================================================\n" \
126 <<
"| Unit Test (CubatureDirect,CubatureTensor,DefaultCubatureFactory) |\n" \
128 <<
"| 1) Computing integrals of monomials on reference cells in 3D |\n" \
129 <<
"| - no BLAS, i.e. standard addition loops - |\n" \
131 <<
"| Questions? Contact Pavel Bochev (pbboche@sandia.gov) or |\n" \
132 <<
"| Denis Ridzal (dridzal@sandia.gov). |\n" \
134 <<
"| Intrepid's website: http://trilinos.sandia.gov/packages/intrepid |\n" \
135 <<
"| Trilinos website: http://trilinos.sandia.gov |\n" \
137 <<
"===============================================================================\n"\
138 <<
"| TEST 1: integrals of monomials in 3D (non-BLAS version) |\n"\
139 <<
"===============================================================================\n";
145 Teuchos::Array< Teuchos::Array<double> > testInt;
146 Teuchos::Array< Teuchos::Array<double> > analyticInt;
147 Teuchos::Array<double> tmparray(1);
148 double reltol = 1.0e+04 * INTREPID_TOL;
163 for (
int i=0; i<4; i++) {
164 numPoly[i] = (maxDeg[i]+1)*(maxDeg[i]+2)*(maxDeg[i]+3)/6;
166 for (
int i=0; i<4; i++) {
167 numAnalytic[i] = (maxOffset[i]+1)*(maxOffset[i]+2)*(maxOffset[i]+3)/6;
171 std::string basedir =
"./data";
172 std::stringstream namestream[4];
173 std::string filename[4];
174 namestream[0] << basedir <<
"/TET_integrals" <<
".dat";
175 namestream[0] >> filename[0];
176 namestream[1] << basedir <<
"/HEX_integrals" <<
".dat";
177 namestream[1] >> filename[1];
178 namestream[2] << basedir <<
"/TRIPRISM_integrals" <<
".dat";
179 namestream[2] >> filename[2];
180 namestream[3] << basedir <<
"/PYR_integrals" <<
".dat";
181 namestream[3] >> filename[3];
184 shards::CellTopology cellType[] = {shards::getCellTopologyData< shards::Tetrahedron<> >(),
185 shards::getCellTopologyData< shards::Hexahedron<> >(),
186 shards::getCellTopologyData< shards::Wedge<> >(),
187 shards::getCellTopologyData< shards::Pyramid<> >() };
189 TypeOfExactData dataFormat[] = {INTREPID_UTILS_SCALAR, INTREPID_UTILS_FRACTION, INTREPID_UTILS_FRACTION, INTREPID_UTILS_FRACTION};
193 for (
int cellCt=0; cellCt < 4; cellCt++) {
194 testInt.assign(numPoly[cellCt], tmparray);
195 analyticInt.assign(numAnalytic[cellCt], tmparray);
196 *outStream <<
"\nIntegrals of monomials on a reference " << cellType[cellCt].getBaseCellTopologyData()->name <<
":\n";
197 std::ifstream filecompare(&filename[cellCt][0]);
199 for (
int cubDeg=0; cubDeg <= maxDeg[cellCt]; cubDeg++) {
201 testInt[cubDeg].resize((cubDeg+1)*(cubDeg+2)*(cubDeg+3)/6);
202 for (
int xDeg=0; xDeg <= cubDeg; xDeg++) {
203 for (
int yDeg=0; yDeg <= cubDeg-xDeg; yDeg++) {
204 for (
int zDeg=0; zDeg <= cubDeg-xDeg-yDeg; zDeg++) {
205 testInt[cubDeg][polyCt] = computeIntegral(cellType[cellCt], cubDeg, xDeg, yDeg, zDeg);
212 if (filecompare.is_open()) {
213 getAnalytic(analyticInt, filecompare, dataFormat[cellCt]);
218 for (
int cubDeg=0; cubDeg <= maxDeg[cellCt]; cubDeg++) {
221 int oldErrorFlag = errorFlag;
222 for (
int xDeg=0; xDeg <= cubDeg; xDeg++) {
223 for (
int yDeg=0; yDeg <= cubDeg-xDeg; yDeg++) {
224 for (
int zDeg=0; zDeg <= cubDeg-xDeg-yDeg; zDeg++) {
225 double abstol = ( analyticInt[polyCt+offset][0] == 0.0 ? reltol : std::fabs(reltol*analyticInt[polyCt+offset][0]) );
226 double absdiff = std::fabs(analyticInt[polyCt+offset][0] - testInt[cubDeg][polyCt]);
227 if (absdiff > abstol) {
228 *outStream <<
"Cubature order " << std::setw(2) << std::left << cubDeg <<
" integrating "
229 <<
"x^" << std::setw(2) << std::left << xDeg <<
" * y^" << std::setw(2) << yDeg
230 <<
" * z^" << std::setw(2) << zDeg <<
":" <<
" "
231 << std::scientific << std::setprecision(16)
232 << testInt[cubDeg][polyCt] <<
" " << analyticInt[polyCt+offset][0] <<
" "
233 << std::setprecision(4) << absdiff <<
" " <<
"<?" <<
" " << abstol <<
"\n";
235 *outStream << std::right << std::setw(118) <<
"^^^^---FAILURE!\n";
239 offset = offset + maxOffset[cellCt] - cubDeg;
241 offset = offset + (maxOffset[cellCt] - cubDeg)*(maxOffset[cellCt] - cubDeg + 1)/2;
243 *outStream <<
"Cubature order " << std::setw(2) << std::left << cubDeg;
244 if (errorFlag == oldErrorFlag)
245 *outStream <<
" passed.\n";
247 *outStream <<
" failed.\n";
252 catch (
const std::logic_error & err) {
253 *outStream << err.what() <<
"\n";
259 std::cout <<
"End Result: TEST FAILED\n";
261 std::cout <<
"End Result: TEST PASSED\n";
264 std::cout.copyfmt(oldFormatState);
int dimension(const int whichDim) const
Returns the specified dimension.
#define INTREPID_CUBATURE_TRI_DEFAULT_MAX
The maximum degree of the polynomial that can be integrated exactly by a direct triangle rule of the ...
#define INTREPID_CUBATURE_LINE_GAUSS_MAX
The maximum degree of the polynomial that can be integrated exactly by a direct line rule of the Gaus...
#define INTREPID_CUBATURE_LINE_GAUSSJACOBI20_MAX
The maximum degree of the polynomial that can be integrated exactly by a direct line rule of the Gaus...
#define INTREPID_CUBATURE_TET_DEFAULT_MAX
The maximum degree of the polynomial that can be integrated exactly by a direct tetrahedron rule of t...
Header file for the abstract base class Intrepid::DefaultCubatureFactory.
A factory class that generates specific instances of cubatures.
Teuchos::RCP< Cubature< Scalar, ArrayPoint, ArrayWeight > > create(const shards::CellTopology &cellTopology, const std::vector< int > °ree)
Factory method.