43 #ifndef IFPACK2_ILUT_DEF_HPP
44 #define IFPACK2_ILUT_DEF_HPP
47 #if defined (__clang__) && !defined (__INTEL_COMPILER)
48 #pragma clang system_header
51 #include "Ifpack2_Heap.hpp"
52 #include "Ifpack2_LocalFilter.hpp"
53 #include "Ifpack2_LocalSparseTriangularSolver.hpp"
54 #include "Ifpack2_Parameters.hpp"
55 #include "Ifpack2_Details_getParamTryingTypes.hpp"
56 #include "Tpetra_CrsMatrix.hpp"
59 #include <type_traits>
89 template<
class ScalarType>
91 ilutDefaultDropTolerance () {
93 typedef typename STS::magnitudeType magnitude_type;
97 const magnitude_type oneHalf = STM::one() / (STM::one() + STM::one());
102 return std::min (static_cast<magnitude_type> (1000) * STS::magnitude (STS::eps ()), oneHalf);
109 ilutDefaultDropTolerance<double> () {
116 template <
class MatrixType>
119 Athresh_ (Teuchos::ScalarTraits<magnitude_type>::zero ()),
120 Rthresh_ (Teuchos::ScalarTraits<magnitude_type>::one ()),
121 RelaxValue_ (Teuchos::ScalarTraits<magnitude_type>::zero ()),
123 DropTolerance_ (ilutDefaultDropTolerance<
scalar_type> ()),
124 InitializeTime_ (0.0),
130 IsInitialized_ (false),
136 template<
class MatrixType>
143 template <
class MatrixType>
146 using Details::getParamTryingTypes;
147 const char prefix[] =
"Ifpack2::ILUT: ";
156 double fillLevel = LevelOfFill_;
158 const std::string paramName (
"fact: ilut level-of-fill");
159 getParamTryingTypes<double, double, float>
160 (fillLevel, params, paramName, prefix);
162 (fillLevel < 1.0, std::runtime_error,
163 "Ifpack2::ILUT: The \"fact: ilut level-of-fill\" parameter must be >= "
164 "1.0, but you set it to " << fillLevel <<
". For ILUT, the fill level "
165 "means something different than it does for ILU(k). ILU(0) produces "
166 "factors with the same sparsity structure as the input matrix A. For "
167 "ILUT, level-of-fill = 1.0 will produce factors with nonzeros matching "
168 "the sparsity structure of A. level-of-fill > 1.0 allows for additional "
172 magnitude_type absThresh = Athresh_;
174 const std::string paramName (
"fact: absolute threshold");
175 getParamTryingTypes<magnitude_type, magnitude_type, double>
176 (absThresh, params, paramName, prefix);
179 magnitude_type relThresh = Rthresh_;
181 const std::string paramName (
"fact: relative threshold");
182 getParamTryingTypes<magnitude_type, magnitude_type, double>
183 (relThresh, params, paramName, prefix);
186 magnitude_type relaxValue = RelaxValue_;
188 const std::string paramName (
"fact: relax value");
189 getParamTryingTypes<magnitude_type, magnitude_type, double>
190 (relaxValue, params, paramName, prefix);
193 magnitude_type dropTol = DropTolerance_;
195 const std::string paramName (
"fact: drop tolerance");
196 getParamTryingTypes<magnitude_type, magnitude_type, double>
197 (dropTol, params, paramName, prefix);
201 L_solver_->setParameters(params);
202 U_solver_->setParameters(params);
204 LevelOfFill_ = fillLevel;
205 Athresh_ = absThresh;
206 Rthresh_ = relThresh;
207 RelaxValue_ = relaxValue;
208 DropTolerance_ = dropTol;
212 template <
class MatrixType>
216 A_.is_null (), std::runtime_error,
"Ifpack2::ILUT::getComm: "
217 "The matrix is null. Please call setMatrix() with a nonnull input "
218 "before calling this method.");
219 return A_->getComm ();
223 template <
class MatrixType>
230 template <
class MatrixType>
235 A_.is_null (), std::runtime_error,
"Ifpack2::ILUT::getDomainMap: "
236 "The matrix is null. Please call setMatrix() with a nonnull input "
237 "before calling this method.");
238 return A_->getDomainMap ();
242 template <
class MatrixType>
247 A_.is_null (), std::runtime_error,
"Ifpack2::ILUT::getRangeMap: "
248 "The matrix is null. Please call setMatrix() with a nonnull input "
249 "before calling this method.");
250 return A_->getRangeMap ();
254 template <
class MatrixType>
260 template <
class MatrixType>
262 return NumInitialize_;
266 template <
class MatrixType>
272 template <
class MatrixType>
278 template <
class MatrixType>
280 return InitializeTime_;
284 template<
class MatrixType>
290 template<
class MatrixType>
296 template<
class MatrixType>
299 A_.is_null (), std::runtime_error,
"Ifpack2::ILUT::getNodeSmootherComplexity: "
300 "The input matrix A is null. Please call setMatrix() with a nonnull "
301 "input matrix, then call compute(), before calling this method.");
303 return A_->getNodeNumEntries() + getNodeNumEntries();
307 template<
class MatrixType>
309 return L_->getGlobalNumEntries () + U_->getGlobalNumEntries ();
313 template<
class MatrixType>
315 return L_->getNodeNumEntries () + U_->getNodeNumEntries ();
319 template<
class MatrixType>
325 ! A.
is_null () && A->getComm ()->getSize () == 1 &&
326 A->getNodeNumRows () != A->getNodeNumCols (),
327 std::runtime_error,
"Ifpack2::ILUT::setMatrix: If A's communicator only "
328 "contains one process, then A must be square. Instead, you provided a "
329 "matrix A with " << A->getNodeNumRows () <<
" rows and "
330 << A->getNodeNumCols () <<
" columns.");
336 IsInitialized_ =
false;
338 A_local_ = Teuchos::null;
345 if (! L_solver_.is_null ()) {
346 L_solver_->setMatrix (Teuchos::null);
348 if (! U_solver_.is_null ()) {
349 U_solver_->setMatrix (Teuchos::null);
359 template<
class MatrixType>
368 A_.is_null (), std::runtime_error,
"Ifpack2::ILUT::initialize: "
369 "The matrix to precondition is null. Please call setMatrix() with a "
370 "nonnull input before calling this method.");
373 IsInitialized_ =
false;
375 A_local_ = Teuchos::null;
379 A_local_ = makeLocalFilter (A_);
381 IsInitialized_ =
true;
388 template<
typename ScalarType>
390 scalar_mag (
const ScalarType& s)
396 template<
class MatrixType>
404 using Teuchos::reduceAll;
430 if (! isInitialized ()) {
445 #ifdef IFPACK2_WRITE_FACTORS
446 std::ofstream ofsL(
"L.tif.mtx", std::ios::out);
447 std::ofstream ofsU(
"U.tif.mtx", std::ios::out);
452 double local_nnz =
static_cast<double> (A_local_->getNodeNumEntries ());
453 double fill = ((getLevelOfFill () - 1.0) * local_nnz) / (2 * myNumRows);
458 double fill_ceil=std::ceil(fill);
462 size_type fillL =
static_cast<size_type
>(fill_ceil);
463 size_type fillU =
static_cast<size_type
>(fill_ceil);
465 Array<scalar_type> InvDiagU (myNumRows, zero);
467 Array<Array<local_ordinal_type> > L_tmp_idx(myNumRows);
468 Array<Array<scalar_type> > L_tmpv(myNumRows);
469 Array<Array<local_ordinal_type> > U_tmp_idx(myNumRows);
470 Array<Array<scalar_type> > U_tmpv(myNumRows);
472 enum { UNUSED, ORIG, FILL };
475 Array<int> pattern(max_col, UNUSED);
476 Array<scalar_type> cur_row(max_col, zero);
477 Array<magnitude_type> unorm(max_col);
478 magnitude_type rownorm;
479 Array<local_ordinal_type> L_cols_heap;
480 Array<local_ordinal_type> U_cols;
481 Array<local_ordinal_type> L_vals_heap;
482 Array<local_ordinal_type> U_vals_heap;
487 greater_indirect<scalar_type,local_ordinal_type> vals_comp(cur_row);
493 ArrayRCP<local_ordinal_type> ColIndicesARCP;
494 ArrayRCP<scalar_type> ColValuesARCP;
495 if (! A_local_->supportsRowViews ()) {
496 const size_t maxnz = A_local_->getNodeMaxNumRowEntries ();
497 ColIndicesARCP.resize (maxnz);
498 ColValuesARCP.resize (maxnz);
502 ArrayView<const local_ordinal_type> ColIndicesA;
503 ArrayView<const scalar_type> ColValuesA;
506 if (A_local_->supportsRowViews ()) {
507 A_local_->getLocalRowView (row_i, ColIndicesA, ColValuesA);
508 RowNnz = ColIndicesA.size ();
511 A_local_->getLocalRowCopy (row_i, ColIndicesARCP (), ColValuesARCP (), RowNnz);
512 ColIndicesA = ColIndicesARCP (0, RowNnz);
513 ColValuesA = ColValuesARCP (0, RowNnz);
518 U_cols.push_back(row_i);
519 cur_row[row_i] = zero;
520 pattern[row_i] = ORIG;
522 size_type L_cols_heaplen = 0;
523 rownorm = STM::zero ();
524 for (
size_t i = 0; i < RowNnz; ++i) {
525 if (ColIndicesA[i] < myNumRows) {
526 if (ColIndicesA[i] < row_i) {
527 add_to_heap(ColIndicesA[i], L_cols_heap, L_cols_heaplen);
529 else if (ColIndicesA[i] > row_i) {
530 U_cols.push_back(ColIndicesA[i]);
533 cur_row[ColIndicesA[i]] = ColValuesA[i];
534 pattern[ColIndicesA[i]] = ORIG;
535 rownorm += scalar_mag(ColValuesA[i]);
542 const magnitude_type rthresh = getRelativeThreshold();
544 cur_row[row_i] = as<scalar_type> (getAbsoluteThreshold() * IFPACK2_SGN(v)) + rthresh*v;
546 size_type orig_U_len = U_cols.size();
547 RowNnz = L_cols_heap.size() + orig_U_len;
548 rownorm = getDropTolerance() * rownorm/RowNnz;
551 size_type L_vals_heaplen = 0;
552 while (L_cols_heaplen > 0) {
555 scalar_type multiplier = cur_row[row_k] * InvDiagU[row_k];
556 cur_row[row_k] = multiplier;
557 magnitude_type mag_mult = scalar_mag(multiplier);
558 if (mag_mult*unorm[row_k] < rownorm) {
559 pattern[row_k] = UNUSED;
563 if (pattern[row_k] != ORIG) {
564 if (L_vals_heaplen < fillL) {
565 add_to_heap(row_k, L_vals_heap, L_vals_heaplen, vals_comp);
567 else if (L_vals_heaplen==0 ||
568 mag_mult < scalar_mag(cur_row[L_vals_heap.front()])) {
569 pattern[row_k] = UNUSED;
574 pattern[L_vals_heap.front()] = UNUSED;
576 add_to_heap(row_k, L_vals_heap, L_vals_heaplen, vals_comp);
582 ArrayView<local_ordinal_type> ColIndicesU = U_tmp_idx[row_k]();
583 ArrayView<scalar_type> ColValuesU = U_tmpv[row_k]();
584 size_type ColNnzU = ColIndicesU.size();
586 for(size_type j=0; j<ColNnzU; ++j) {
587 if (ColIndicesU[j] > row_k) {
590 if (pattern[col_j] != UNUSED) {
591 cur_row[col_j] -= tmp;
593 else if (scalar_mag(tmp) > rownorm) {
594 cur_row[col_j] = -tmp;
595 pattern[col_j] = FILL;
597 U_cols.push_back(col_j);
613 for (size_type i = 0; i < ColIndicesA.size (); ++i) {
614 if (ColIndicesA[i] < row_i) {
615 L_tmp_idx[row_i].push_back(ColIndicesA[i]);
616 L_tmpv[row_i].push_back(cur_row[ColIndicesA[i]]);
617 pattern[ColIndicesA[i]] = UNUSED;
622 for (size_type j = 0; j < L_vals_heaplen; ++j) {
623 L_tmp_idx[row_i].push_back(L_vals_heap[j]);
624 L_tmpv[row_i].push_back(cur_row[L_vals_heap[j]]);
625 pattern[L_vals_heap[j]] = UNUSED;
633 #ifdef IFPACK2_WRITE_FACTORS
634 for (size_type ii = 0; ii < L_tmp_idx[row_i].size (); ++ii) {
635 ofsL << row_i <<
" " << L_tmp_idx[row_i][ii] <<
" "
636 << L_tmpv[row_i][ii] << std::endl;
642 if (cur_row[row_i] == zero) {
643 std::cerr <<
"Ifpack2::ILUT::Compute: zero pivot encountered! "
644 <<
"Replacing with rownorm and continuing..."
645 <<
"(You may need to set the parameter "
646 <<
"'fact: absolute threshold'.)" << std::endl;
647 cur_row[row_i] = rownorm;
649 InvDiagU[row_i] = one / cur_row[row_i];
652 U_tmp_idx[row_i].push_back(row_i);
653 U_tmpv[row_i].push_back(cur_row[row_i]);
654 unorm[row_i] = scalar_mag(cur_row[row_i]);
655 pattern[row_i] = UNUSED;
661 size_type U_vals_heaplen = 0;
662 for(size_type j=1; j<U_cols.size(); ++j) {
664 if (pattern[col] != ORIG) {
665 if (U_vals_heaplen < fillU) {
666 add_to_heap(col, U_vals_heap, U_vals_heaplen, vals_comp);
668 else if (U_vals_heaplen!=0 && scalar_mag(cur_row[col]) >
669 scalar_mag(cur_row[U_vals_heap.front()])) {
671 add_to_heap(col, U_vals_heap, U_vals_heaplen, vals_comp);
675 U_tmp_idx[row_i].push_back(col);
676 U_tmpv[row_i].push_back(cur_row[col]);
677 unorm[row_i] += scalar_mag(cur_row[col]);
679 pattern[col] = UNUSED;
682 for(size_type j=0; j<U_vals_heaplen; ++j) {
683 U_tmp_idx[row_i].push_back(U_vals_heap[j]);
684 U_tmpv[row_i].push_back(cur_row[U_vals_heap[j]]);
685 unorm[row_i] += scalar_mag(cur_row[U_vals_heap[j]]);
688 unorm[row_i] /= (orig_U_len + U_vals_heaplen);
690 #ifdef IFPACK2_WRITE_FACTORS
691 for(
int ii=0; ii<U_tmp_idx[row_i].size(); ++ii) {
692 ofsU <<row_i<<
" " <<U_tmp_idx[row_i][ii]<<
" "
693 <<U_tmpv[row_i][ii]<< std::endl;
704 Array<size_t> nnzPerRow(myNumRows);
710 L_solver_->setMatrix(Teuchos::null);
711 U_solver_->setMatrix(Teuchos::null);
714 nnzPerRow[row_i] = L_tmp_idx[row_i].size();
718 nnzPerRow(), Tpetra::StaticProfile));
721 L_->insertLocalValues (row_i, L_tmp_idx[row_i](), L_tmpv[row_i]());
727 nnzPerRow[row_i] = U_tmp_idx[row_i].size();
731 nnzPerRow(), Tpetra::StaticProfile));
734 U_->insertLocalValues (row_i, U_tmp_idx[row_i](), U_tmpv[row_i]());
739 L_solver_->setMatrix(L_);
740 L_solver_->initialize ();
741 L_solver_->compute ();
743 U_solver_->setMatrix(U_);
744 U_solver_->initialize ();
745 U_solver_->compute ();
753 template <
class MatrixType>
755 apply (
const Tpetra::MultiVector<scalar_type, local_ordinal_type, global_ordinal_type, node_type>& X,
756 Tpetra::MultiVector<scalar_type, local_ordinal_type, global_ordinal_type, node_type>& Y,
763 using Teuchos::rcpFromRef;
767 ! isComputed (), std::runtime_error,
768 "Ifpack2::ILUT::apply: You must call compute() to compute the incomplete "
769 "factorization, before calling apply().");
772 X.getNumVectors() != Y.getNumVectors(), std::runtime_error,
773 "Ifpack2::ILUT::apply: X and Y must have the same number of columns. "
774 "X has " << X.getNumVectors () <<
" columns, but Y has "
775 << Y.getNumVectors () <<
" columns.");
784 if (alpha == one && beta == zero) {
787 L_solver_->apply (X, Y, mode);
790 U_solver_->apply (Y, Y, mode);
795 U_solver_->apply (X, Y, mode);
798 L_solver_->apply (Y, Y, mode);
812 MV Y_tmp (Y.getMap (), Y.getNumVectors ());
813 apply (X, Y_tmp, mode);
814 Y.update (alpha, Y_tmp, beta);
824 template <
class MatrixType>
827 std::ostringstream os;
832 os <<
"\"Ifpack2::ILUT\": {";
833 os <<
"Initialized: " << (isInitialized () ?
"true" :
"false") <<
", "
834 <<
"Computed: " << (isComputed () ?
"true" :
"false") <<
", ";
836 os <<
"Level-of-fill: " << getLevelOfFill() <<
", "
837 <<
"absolute threshold: " << getAbsoluteThreshold() <<
", "
838 <<
"relative threshold: " << getRelativeThreshold() <<
", "
839 <<
"relaxation value: " << getRelaxValue() <<
", ";
842 os <<
"Matrix: null";
845 os <<
"Global matrix dimensions: ["
846 << A_->getGlobalNumRows () <<
", " << A_->getGlobalNumCols () <<
"]"
847 <<
", Global nnz: " << A_->getGlobalNumEntries();
855 template <
class MatrixType>
878 out <<
"\"Ifpack2::ILUT\":" << endl;
880 out <<
"MatrixType: " << TypeNameTraits<MatrixType>::name () << endl;
881 if (this->getObjectLabel () !=
"") {
882 out <<
"Label: \"" << this->getObjectLabel () <<
"\"" << endl;
884 out <<
"Initialized: " << (isInitialized () ?
"true" :
"false")
886 <<
"Computed: " << (isComputed () ?
"true" :
"false")
888 <<
"Level of fill: " << getLevelOfFill () << endl
889 <<
"Absolute threshold: " << getAbsoluteThreshold () << endl
890 <<
"Relative threshold: " << getRelativeThreshold () << endl
891 <<
"Relax value: " << getRelaxValue () << endl;
894 const double fillFraction =
895 (double) getGlobalNumEntries () / (double) A_->getGlobalNumEntries ();
896 const double nnzToRows =
897 (double) getGlobalNumEntries () / (double) U_->getGlobalNumRows ();
899 out <<
"Dimensions of L: [" << L_->getGlobalNumRows () <<
", "
900 << L_->getGlobalNumRows () <<
"]" << endl
901 <<
"Dimensions of U: [" << U_->getGlobalNumRows () <<
", "
902 << U_->getGlobalNumRows () <<
"]" << endl
903 <<
"Number of nonzeros in factors: " << getGlobalNumEntries () << endl
904 <<
"Fill fraction of factors over A: " << fillFraction << endl
905 <<
"Ratio of nonzeros to rows: " << nnzToRows << endl;
908 out <<
"Number of initialize calls: " << getNumInitialize () << endl
909 <<
"Number of compute calls: " << getNumCompute () << endl
910 <<
"Number of apply calls: " << getNumApply () << endl
911 <<
"Total time in seconds for initialize: " << getInitializeTime () << endl
912 <<
"Total time in seconds for compute: " << getComputeTime () << endl
913 <<
"Total time in seconds for apply: " << getApplyTime () << endl;
915 out <<
"Local matrix:" << endl;
916 A_local_->describe (out, vl);
920 template <
class MatrixType>
924 if (A->getComm ()->getSize () > 1) {
939 #define IFPACK2_ILUT_INSTANT(S,LO,GO,N) \
940 template class Ifpack2::ILUT< Tpetra::RowMatrix<S, LO, GO, N> >;
ILUT(const Teuchos::RCP< const row_matrix_type > &A)
Constructor.
Definition: Ifpack2_ILUT_def.hpp:117
bool hasTransposeApply() const
Whether this object's apply() method can apply the transpose (or conjugate transpose, if applicable).
Definition: Ifpack2_ILUT_def.hpp:255
basic_OSTab< char > OSTab
#define TEUCHOS_TEST_FOR_EXCEPTION(throw_exception_test, Exception, msg)
global_size_t getGlobalNumEntries() const
Returns the number of nonzero entries in the global graph.
Definition: Ifpack2_ILUT_def.hpp:308
void initialize()
Clear any previously computed factors.
Definition: Ifpack2_ILUT_def.hpp:360
void describe(Teuchos::FancyOStream &out, const Teuchos::EVerbosityLevel verbLevel=Teuchos::Describable::verbLevel_default) const
Print the object with some verbosity level to an FancyOStream object.
Definition: Ifpack2_ILUT_def.hpp:858
std::string description() const
Return a simple one-line description of this object.
Definition: Ifpack2_ILUT_def.hpp:825
ILUT (incomplete LU factorization with threshold) of a Tpetra sparse matrix.
Definition: Ifpack2_ILUT_decl.hpp:91
size_t getNodeNumEntries() const
Returns the number of nonzero entries in the local graph.
Definition: Ifpack2_ILUT_def.hpp:314
void rm_heap_root(Teuchos::Array< Ordinal > &heap, SizeType &heap_len)
Definition: Ifpack2_Heap.hpp:92
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
Teuchos::RCP< const map_type > getRangeMap() const
Tpetra::Map representing the range of this operator.
Definition: Ifpack2_ILUT_def.hpp:244
"Preconditioner" that solves local sparse triangular systems.
Definition: Ifpack2_LocalSparseTriangularSolver_decl.hpp:77
MatrixType::scalar_type scalar_type
The type of the entries of the input MatrixType.
Definition: Ifpack2_ILUT_decl.hpp:106
void compute()
Compute factors L and U using the specified diagonal perturbation thresholds and relaxation parameter...
Definition: Ifpack2_ILUT_def.hpp:397
virtual void setMatrix(const Teuchos::RCP< const row_matrix_type > &A)
Change the matrix to be preconditioned.
Definition: Ifpack2_ILUT_def.hpp:320
static magnitudeType magnitude(T a)
int getNumInitialize() const
Returns the number of calls to Initialize().
Definition: Ifpack2_ILUT_def.hpp:261
double getApplyTime() const
Returns the time spent in apply().
Definition: Ifpack2_ILUT_def.hpp:291
Teuchos::RCP< const Teuchos::Comm< int > > getComm() const
Returns the input matrix's communicator.
Definition: Ifpack2_ILUT_def.hpp:214
Tpetra::CrsMatrix< scalar_type, local_ordinal_type, global_ordinal_type, node_type > crs_matrix_type
Type of the Tpetra::CrsMatrix specialization that this class uses for the L and U factors...
Definition: Ifpack2_ILUT_decl.hpp:126
TypeTo as(const TypeFrom &t)
Teuchos::RCP< const map_type > getDomainMap() const
Tpetra::Map representing the domain of this operator.
Definition: Ifpack2_ILUT_def.hpp:232
double totalElapsedTime(bool readCurrentTime=false) const
void add_to_heap(const Ordinal &idx, Teuchos::Array< Ordinal > &heap, SizeType &heap_len)
Definition: Ifpack2_Heap.hpp:70
size_t getNodeSmootherComplexity() const
Get a rough estimate of cost per iteration.
Definition: Ifpack2_ILUT_def.hpp:297
Access only local rows and columns of a sparse matrix.
Definition: Ifpack2_LocalFilter_decl.hpp:160
double getInitializeTime() const
Returns the time spent in Initialize().
Definition: Ifpack2_ILUT_def.hpp:279
int getNumApply() const
Returns the number of calls to apply().
Definition: Ifpack2_ILUT_def.hpp:273
void apply(const Tpetra::MultiVector< scalar_type, local_ordinal_type, global_ordinal_type, node_type > &X, Tpetra::MultiVector< scalar_type, local_ordinal_type, global_ordinal_type, node_type > &Y, Teuchos::ETransp mode=Teuchos::NO_TRANS, scalar_type alpha=Teuchos::ScalarTraits< scalar_type >::one(), scalar_type beta=Teuchos::ScalarTraits< scalar_type >::zero()) const
Apply the ILUT preconditioner to X, resulting in Y.
Definition: Ifpack2_ILUT_def.hpp:755
double getComputeTime() const
Returns the time spent in Compute().
Definition: Ifpack2_ILUT_def.hpp:285
void setParameters(const Teuchos::ParameterList ¶ms)
Set preconditioner parameters.
Definition: Ifpack2_ILUT_def.hpp:144
int getNumCompute() const
Returns the number of calls to Compute().
Definition: Ifpack2_ILUT_def.hpp:267
MatrixType::local_ordinal_type local_ordinal_type
The type of local indices in the input MatrixType.
Definition: Ifpack2_ILUT_decl.hpp:109
Teuchos::RCP< const row_matrix_type > getMatrix() const
Returns a reference to the matrix to be preconditioned.
Definition: Ifpack2_ILUT_def.hpp:225