Anasazi  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
LOBPCGCustomStatusTest.cpp

Use LOBPCG with Tpetra, with custom StatusTest.This example shows how to define a custom StatusTest so that Anasazi's solver LOBPCG converges correctly with spectrum folding. Without a custom status test, Anasazi would compute the residual as $ R = A^2 X - X \Sigma^2$. The custom status test makes Anasazi use the residual $ R = A X - X \Sigma$ instead.

// @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright 2004 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
// This example shows how to define a custom operator and status test for Anasazi
#include "AnasaziTypes.hpp"
#include "Tpetra_Core.hpp"
#include "MatrixMarket_Tpetra.hpp"
// These tell the compiler which namespace contains RCP, cout, etc
using std::cout;
using std::endl;
// These define convenient aliases
typedef double Scalar;
typedef Tpetra::MultiVector<Scalar> TMV;
typedef Tpetra::Vector<Scalar> Vector;
typedef Tpetra::Operator<Scalar> TOP;
namespace { // (anonymous)
// This class defines an operator A^2 for spectrum folding. We don't
// explicitly form the matrix A^2; we just implement its action on a
// vector. We can do this because Anasazi is templated on operators
// rather than matrices.
class FoldOp : public TOP {
public:
typedef Tpetra::Map<> map_type;
FoldOp (const RCP<const TOP> A) { A_ = A; };
int SetUseTranspose (bool UseTranspose) { return -1; };
void
apply (const TMV& X, TMV& Y, Teuchos::ETransp mode = Teuchos::NO_TRANS,
Scalar beta = Teuchos::ScalarTraits<Scalar>::zero ()) const;
RCP<const map_type> getDomainMap () const { return A_->getDomainMap (); };
RCP<const map_type> getRangeMap () const { return A_->getRangeMap (); };
private:
RCP<const TOP> A_;
}; // end of class
void
FoldOp::apply (const TMV &X, TMV &Y, Teuchos::ETransp mode,
Scalar alpha, Scalar beta) const
{
TMV Y1 (X.getMap (), X.getNumVectors (), false);
A_->apply (X, Y1, mode, alpha, beta);
A_->apply (Y1, Y, mode, alpha, beta);
}
// Define a custom status test for spectrum folding.
//
// Since our operator is defined as A^2, the Anasazi eigensolvers will
// compute the residual as R = A^2 X - X \Sigma^2. We want to monitor
// the residual R = A X - X \Sigma instead.
class StatusTestFolding : public Anasazi::StatusTest<Scalar,TMV,TOP> {
public:
// Constructor
StatusTestFolding (Scalar tol, int quorum = -1,
bool scaled = true,
bool throwExceptionOnNan = true,
const RCP<const TOP>& A = Teuchos::null);
// Destructor
virtual ~StatusTestFolding() {};
// Check whether the test passed or failed
// Return the result of the most recent checkStatus call
Anasazi::TestStatus getStatus () const { return state_; }
// Get the indices for the vectors that passed the test
std::vector<int> whichVecs () const { return ind_; }
// Get the number of vectors that passed the test
int howMany () const { return ind_.size (); }
// Informs the status test that it should reset its internal configuration to the uninitialized state
void reset () {
ind_.resize (0);
}
// Clears the results of the last status test
void clearStatus () { reset (); };
// Output formatted description of stopping test to output stream
std::ostream& print (std::ostream &os, int indent=0) const;
private:
Scalar tol_;
std::vector<int> ind_;
int quorum_;
bool scaled_;
// bool throwExceptionOnNaN_; (unused)
RCP<const TOP> A_;
const Scalar ONE;
};
// Constructor for our custom status test
StatusTestFolding::
StatusTestFolding (Scalar tol, int quorum, bool scaled,
bool /* throwExceptionOnNaN (unused) */,
const RCP<const TOP>& A)
: state_ (Anasazi::Undefined),
tol_ (tol),
quorum_ (quorum),
scaled_ (scaled),
/* throwExceptionOnNaN_ (throwExceptionOnNaN), (unused) */
A_ (A),
{}
// Check whether the test passed or failed
StatusTestFolding::checkStatus (Anasazi::Eigensolver<Scalar,TMV,TOP>* solver)
{
RCP<const TMV> X = solver->getRitzVectors ();
const int numev = X->getNumVectors ();
std::vector<Scalar> res (numev);
TMV AX (X->getMap (), numev, false);
A_->apply (*X, AX);
TMVT::MvTransMv (1.0, AX, *X, T);
TMVT::MvTimesMatAddMv (-1.0, *X, T, 1.0, AX);
TMVT::MvNorm (AX, res);
// if appropriate, scale the norms by the magnitude of the eigenvalue estimate
if (scaled_) {
for (int i = 0; i < numev; ++i) {
res[i] /= std::abs (T(i,i));
}
}
// test the norms
ind_.resize (0);
for (int i = 0; i < numev; ++i) {
if (res[i] < tol_) {
ind_.push_back (i);
}
}
const int have = ind_.size ();
const int need = (quorum_ == -1) ? numev : quorum_;
state_ = (have >= need) ? Anasazi::Passed : Anasazi::Failed;
return state_;
}
// Output formatted description of stopping test to output stream
std::ostream&
StatusTestFolding::print (std::ostream& os, int indent) const
{
std::string ind (indent, ' ');
os << ind << "- StatusTestFolding: ";
switch (state_) {
os << "Passed\n";
break;
os << "Failed\n";
break;
os << "Undefined\n";
break;
}
os << ind << " (Tolerance, WhichNorm,Scaled,Quorum): "
<< "(" << tol_
<< ",RES_2NORM"
<< "," << (scaled_ ? "true" : "false")
<< "," << quorum_
<< ")\n";
if (state_ != Anasazi::Undefined) {
os << ind << " Which vectors: ";
if (ind_.size () > 0) {
for (size_t i = 0; i < ind_.size (); ++i) {
os << ind_[i] << " ";
}
os << std::endl;
}
else {
os << "[empty]\n";
}
}
return os;
}
} // namespace (anonymous)
int
main (int argc, char* argv[])
{
typedef Tpetra::CrsMatrix<> CrsMatrix;
typedef Tpetra::MatrixMarket::Reader<CrsMatrix> Reader;
Tpetra::ScopeGuard tpetraScope (&argc, &argv);
//
// Get the default communicator
//
RCP<const Teuchos::Comm<int> > comm = Tpetra::getDefaultComm ();
const int myRank = comm->getRank();
// Read the command line arguments
std::string fileA ("/u/slotnick_s2/aklinvex/matrices/anderson4.mtx");
Teuchos::CommandLineProcessor cmdp (false, true);
cmdp.setOption ("fileA", &fileA, "Filename for the Matrix-Market stiffness matrix.");
if (cmdp.parse (argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL) {
return -1;
}
// Get the matrix
RCP<const CrsMatrix> A = Reader::readSparseFile (fileA, comm);
// Create the folded operator, K = A^2
RCP<FoldOp> K = rcp (new FoldOp (A));
// set parameters for solver
int blockSize = 4;
double tol = 1e-5;
bool scaled = true;
int nev = 4;
MyPL.set ("Which", "SR");
MyPL.set ("Maximum Restarts", 10000);
MyPL.set ("Maximum Iterations", 1000000);
MyPL.set ("Block Size", blockSize);
MyPL.set ("Convergence Tolerance", tol ); // How small do the residuals have to be
MyPL.set ("Relative Convergence Tolerance", scaled);
MyPL.set ("Relative Locking Tolerance", scaled);
MyPL.set ("Verbosity", Anasazi::TimingDetails);
// Create a MultiVector for an initial subspace to start the solver.
RCP<TMV> ivec = rcp (new TMV (A->getRowMap (), blockSize));
TMVT::MvRandom (*ivec);
// Create the eigenproblem
RCP<Problem> MyProblem = rcp (new Problem (K, ivec));
// Inform the eigenproblem that the matrix pencil (K,M) is symmetric
MyProblem->setHermitian (true);
// Set the number of eigenvalues requested
MyProblem->setNEV (nev);
// Tell the problem that you are finished passing it information
MyProblem->setProblem ();
// Create the eigensolver and give it your problem and parameters.
Anasazi::LOBPCGSolMgr<Scalar,TMV,TOP> solver (MyProblem, MyPL);
// Give the eigensolver a status test consistent with the spectral transformation.
RCP<StatusTestFolding> convTest =
rcp (new StatusTestFolding (tol, nev, scaled, true, A));
RCP<StatusTestFolding> lockTest =
rcp (new StatusTestFolding (tol/10., 1, scaled, true, A));
solver.setGlobalStatusTest (convTest);
solver.setLockingStatusTest (lockTest);
// Tell the solver to solve the eigenproblem.
Anasazi::ReturnType returnCode = solver.solve ();
if (returnCode != Anasazi::Converged && myRank == 0) {
cout << "The solve did NOT converge." << endl;
} else if (myRank == 0) {
cout << "The solve converged." << endl;
}
// Get the eigenvalues and eigenvectors from the eigenproblem
Anasazi::Eigensolution<Scalar,TMV> sol = MyProblem->getSolution ();
std::vector<Anasazi::Value<Scalar> > evals = sol.Evals;
RCP<TMV> evecs = sol.Evecs;
int numev = sol.numVecs;
// Compute the residual, just as a precaution
if (numev > 0) {
std::vector<Scalar> normR (sol.numVecs);
TMV Avec (A->getRowMap (), TMVT::GetNumberVecs (*evecs));
TOPT::Apply (*A, *evecs, Avec);
TMVT::MvTransMv (1.0, Avec, *evecs, T);
TMVT::MvTimesMatAddMv (-1.0, *evecs, T, 1.0, Avec);
TMVT::MvNorm (Avec, normR);
if (myRank == 0) {
cout.setf(std::ios_base::right, std::ios_base::adjustfield);
cout<<"Actual Eigenvalues: "<<std::endl;
cout<<"------------------------------------------------------"<<std::endl;
cout<<std::setw(16)<<"Real Part"
<<std::setw(16)<<"Error"<<std::endl;
cout<<"------------------------------------------------------"<<std::endl;
for (int i=0; i<numev; i++) {
cout<<std::setw(16)<<T(i,i)
<<std::setw(16)<<normR[i]/std::abs(T(i,i))
<<std::endl;
}
cout<<"------------------------------------------------------"<<std::endl;
}
}
return 0;
}