49 Real 
random(
const ROL::Ptr<
const Teuchos::Comm<int> > &comm) {
 
   51   if ( Teuchos::rank<int>(*comm)==0 ) {
 
   52     val = (Real)rand()/(Real)RAND_MAX;
 
   54   Teuchos::broadcast<int,Real>(*comm,0,1,&val);
 
   58 int main(
int argc, 
char* argv[]) {
 
   60   Teuchos::GlobalMPISession mpiSession(&argc, &argv);
 
   61   ROL::Ptr<const Teuchos::Comm<int> > comm
 
   62     = ROL::toPtr(Teuchos::DefaultComm<int>::getComm());
 
   65   int iprint = argc - 1;
 
   66   ROL::Ptr<std::ostream> outStream;
 
   68   if (iprint > 0 && Teuchos::rank<int>(*comm)==0)
 
   69     outStream = ROL::makePtrFromRef(std::cout);
 
   71     outStream = ROL::makePtrFromRef(bhs);
 
   80     std::string filename = 
"input.xml";
 
   81     auto parlist = ROL::getParametersFromXmlFile( filename );
 
   83     parlist->sublist(
"Status Test").set(
"Gradient Tolerance",1.e-7);
 
   84     parlist->sublist(
"Status Test").set(
"Step Tolerance",1.e-14);
 
   85     parlist->sublist(
"Status Test").set(
"Iteration Limit",100);
 
   92     ROL::Ptr<std::vector<RealT> > z_ptr  = ROL::makePtr<std::vector<RealT>>(nx+2,0);
 
   93     ROL::Ptr<ROL::Vector<RealT> > zp  = ROL::makePtr<ROL::StdVector<RealT>>(z_ptr);
 
   94     ROL::Ptr<std::vector<RealT> > x1_ptr = ROL::makePtr<std::vector<RealT>>(nx+2,0);
 
   95     ROL::Ptr<ROL::Vector<RealT> > x1p = ROL::makePtr<ROL::StdVector<RealT>>(x1_ptr);
 
   96     ROL::Ptr<std::vector<RealT> > x2_ptr = ROL::makePtr<std::vector<RealT>>(nx+2,0);
 
   97     ROL::Ptr<ROL::Vector<RealT> > x2p = ROL::makePtr<ROL::StdVector<RealT>>(x2_ptr);
 
   98     ROL::Ptr<std::vector<RealT> > x3_ptr = ROL::makePtr<std::vector<RealT>>(nx+2,0);
 
   99     ROL::Ptr<ROL::Vector<RealT> > x3p = ROL::makePtr<ROL::StdVector<RealT>>(x3_ptr);
 
  100     std::vector<ROL::Ptr<ROL::Vector<RealT> > > xvec = {x1p, x2p, x3p};
 
  102     ROL::Ptr<std::vector<RealT> > xr_ptr = ROL::makePtr<std::vector<RealT>>(nx+2,0);
 
  104     ROL::Ptr<std::vector<RealT> > d_ptr  = ROL::makePtr<std::vector<RealT>>(nx+2,0);
 
  106     for ( 
int i = 0; i < nx+2; i++ ) {
 
  107       (*xr_ptr)[i] = random<RealT>(comm);
 
  108       (*d_ptr)[i]  = random<RealT>(comm);
 
  111     ROL::Ptr<std::vector<RealT> > u_ptr = ROL::makePtr<std::vector<RealT>>(nx,1);
 
  112     ROL::Ptr<ROL::Vector<RealT> > up = ROL::makePtr<ROL::StdVector<RealT>>(u_ptr);
 
  113     ROL::Ptr<std::vector<RealT> > p_ptr = ROL::makePtr<std::vector<RealT>>(nx,0);
 
  114     ROL::Ptr<ROL::Vector<RealT> > pp = ROL::makePtr<ROL::StdVector<RealT>>(p_ptr);
 
  119     int dim = 4, nSamp = 100;
 
  120     std::vector<RealT> tmp = {-1, 1};
 
  121     std::vector<std::vector<RealT> > bounds(dim,tmp);
 
  122     ROL::Ptr<ROL::BatchManager<RealT> > bman
 
  123       = ROL::makePtr<ROL::StdTeuchosBatchManager<RealT,int>>(comm);
 
  124     ROL::Ptr<ROL::SampleGenerator<RealT> > sampler
 
  125       = ROL::makePtr<ROL::MonteCarloGenerator<RealT>>(nSamp,bounds,bman,
false,
false,100);
 
  131     ROL::Ptr<ROL::Objective_SimOpt<RealT> > pobjSimOpt
 
  132       = ROL::makePtr<Objective_BurgersControl<RealT>>(alpha,nx);
 
  133     ROL::Ptr<ROL::Constraint_SimOpt<RealT> > pconSimOpt
 
  134       = ROL::makePtr<Constraint_BurgersControl<RealT>>(nx);
 
  135     pconSimOpt->setSolveParameters(*parlist);
 
  136     ROL::Ptr<ROL::Objective<RealT> > pObj
 
  137       = ROL::makePtr<ROL::Reduced_Objective_SimOpt<RealT>>(pobjSimOpt,pconSimOpt,up,zp,pp);
 
  139     *outStream << 
"Check Derivatives of Parametrized Objective Function\n";
 
  141     pObj->setParameter(sampler->getMyPoint(0));
 
  142     pObj->checkGradient(*xvec[0],d,
true,*outStream);
 
  143     pObj->checkHessVec(*xvec[0],d,
true,*outStream);
 
  147     const RealT cl(0.9), cc(1), lb(-0.5), ub(0.5);
 
  148     const std::string ra = 
"Risk Averse", rm = 
"CVaR", dist = 
"Parabolic";
 
  149     const bool storage = 
true;
 
  151     std::vector<RealT> stat(3,0);
 
  152     ROL::Ptr<ROL::OptimizationProblem<RealT>> optProb;
 
  153     ROL::Ptr<ROL::OptimizationSolver<RealT>>  solver;
 
  154     for (
int i = 0; i < 3; ++i) {
 
  155       *outStream << 
"\nSOLVE SMOOTHED CONDITIONAL VALUE AT RISK WITH TRUST REGION\n";
 
  157       ROL::ParameterList list;
 
  158       list.sublist(
"SOL").set(
"Stochastic Component Type",ra);
 
  159       list.sublist(
"SOL").set(
"Store Sampled Value and Gradient",storage);
 
  160       list.sublist(
"SOL").sublist(
"Risk Measure").set(
"Name",rm);
 
  161       list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).set(
"Confidence Level",cl);
 
  162       list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).set(
"Convex Combination Parameter",cc);
 
  163       list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).set(
"Smoothing Parameter",eps);
 
  164       list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).sublist(
"Distribution").set(
"Name",dist);
 
  165       list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).sublist(
"Distribution").sublist(dist).set(
"Lower Bound",lb);
 
  166       list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).sublist(
"Distribution").sublist(dist).set(
"Upper Bound",ub);
 
  168       if ( i==0 ) { xvec[i]->zero();          }
 
  169       else        { xvec[i]->set(*xvec[i-1]); }
 
  170       optProb = ROL::makePtr<ROL::OptimizationProblem<RealT>>(pObj,xvec[i]);
 
  172       if ( i > 0 ) { init_stat = stat[i-1]; }
 
  173       list.sublist(
"SOL").set(
"Initial Statistic",init_stat);
 
  174       optProb->setStochasticObjective(list,sampler);
 
  175       optProb->check(*outStream);
 
  177       parlist->sublist(
"Step").set(
"Type",
"Trust Region");
 
  178       solver = ROL::makePtr<ROL::OptimizationSolver<RealT>>(*optProb,*parlist);
 
  179       clock_t start = clock();
 
  180       solver->solve(*outStream);
 
  181       *outStream << 
"Optimization time: " << (
RealT)(clock()-start)/(
RealT)CLOCKS_PER_SEC << 
" seconds.\n";
 
  183       stat[i] = optProb->getSolutionStatistic();
 
  185       eps *= 
static_cast<RealT>(1.e-2);
 
  190     *outStream << 
"\nSOLVE NONSMOOTH CVAR PROBLEM WITH BUNDLE TRUST REGION\n";
 
  191     ROL::ParameterList list;
 
  192     list.sublist(
"SOL").set(
"Stochastic Component Type",ra);
 
  193     list.sublist(
"SOL").set(
"Store Sampled Value and Gradient",storage);
 
  194     list.sublist(
"SOL").sublist(
"Risk Measure").set(
"Name",rm);
 
  195     list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).set(
"Confidence Level",cl);
 
  196     list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).set(
"Convex Combination Parameter",cc);
 
  197     list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).set(
"Smoothing Parameter",0.);
 
  198     list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).sublist(
"Distribution").set(
"Name",
"Dirac");
 
  199     list.sublist(
"SOL").sublist(
"Risk Measure").sublist(rm).sublist(
"Distribution").sublist(
"Dirac").set(
"Location",0.);
 
  202     optProb = ROL::makePtr<ROL::OptimizationProblem<RealT>>(pObj,zp);
 
  203     list.sublist(
"SOL").set(
"Initial Statistic",stat[2]);
 
  204     optProb->setStochasticObjective(list,sampler);
 
  205     optProb->check(*outStream);
 
  207     parlist->sublist(
"Status Test").set(
"Iteration Limit",1000);
 
  208     parlist->sublist(
"Step").sublist(
"Bundle").set(
"Epsilon Solution Tolerance",1.e-7);
 
  209     parlist->sublist(
"Step").set(
"Type",
"Bundle");
 
  210     solver = ROL::makePtr<ROL::OptimizationSolver<RealT>>(*optProb,*parlist);
 
  211     clock_t start = clock();
 
  212     solver->solve(*outStream);
 
  213     *outStream << 
"Optimization time: " << (
RealT)(clock()-start)/(
RealT)CLOCKS_PER_SEC << 
" seconds.\n";
 
  217     ROL::Ptr<ROL::Vector<RealT> > cErr = zp->clone();
 
  218     RealT zstat = optProb->getSolutionStatistic();
 
  219     *outStream << 
"\nSUMMARY:\n";
 
  220     *outStream << 
"  ---------------------------------------------\n";
 
  221     *outStream << 
"    True Value-At-Risk    = " << zstat << 
"\n";
 
  222     *outStream << 
"  ---------------------------------------------\n";
 
  223     RealT VARerror  = std::abs(zstat-stat[0]);
 
  224     cErr->set(*xvec[0]); cErr->axpy(-1.0,*zp);
 
  225     RealT CTRLerror = cErr->norm();
 
  226     RealT TOTerror1 = std::sqrt(std::pow(VARerror,2)+std::pow(CTRLerror,2));
 
  227     *outStream << 
"    Value-At-Risk (1.e-2) = " <<   stat[0] << 
"\n";
 
  228     *outStream << 
"    Value-At-Risk Error   = " <<  VARerror << 
"\n";
 
  229     *outStream << 
"    Control Error         = " << CTRLerror << 
"\n";
 
  230     *outStream << 
"    Total Error           = " << TOTerror1 << 
"\n";
 
  231     *outStream << 
"  ---------------------------------------------\n";
 
  232     VARerror  = std::abs(zstat-stat[1]);
 
  233     cErr->set(*xvec[1]); cErr->axpy(-1.0,*zp);
 
  234     CTRLerror = cErr->norm();
 
  235     RealT TOTerror2 = std::sqrt(std::pow(VARerror,2)+std::pow(CTRLerror,2));
 
  236     *outStream << 
"    Value-At-Risk (1.e-4) = " <<   stat[1] << 
"\n";
 
  237     *outStream << 
"    Value-At-Risk Error   = " <<  VARerror << 
"\n";
 
  238     *outStream << 
"    Control Error         = " << CTRLerror << 
"\n";
 
  239     *outStream << 
"    Total Error           = " << TOTerror2 << 
"\n";
 
  240     *outStream << 
"  ---------------------------------------------\n";
 
  241     VARerror  = std::abs(zstat-stat[2]);
 
  242     cErr->set(*xvec[2]); cErr->axpy(-1.0,*zp);
 
  243     CTRLerror = cErr->norm();
 
  244     RealT TOTerror3 = std::sqrt(std::pow(VARerror,2)+std::pow(CTRLerror,2));
 
  245     *outStream << 
"    Value-At-Risk (1.e-6) = " <<   stat[2] << 
"\n";
 
  246     *outStream << 
"    Value-At-Risk Error   = " <<  VARerror << 
"\n";
 
  247     *outStream << 
"    Control Error         = " << CTRLerror << 
"\n";
 
  248     *outStream << 
"    Total Error           = " << TOTerror3 << 
"\n";
 
  249     *outStream << 
"  ---------------------------------------------\n\n";
 
  251     errorFlag += ((TOTerror1 < 90.*TOTerror2) && (TOTerror2 < 90.*TOTerror3)) ? 1 : 0;
 
  254     std::ofstream control;
 
  255     control.open(
"example04_control.txt");
 
  256     for (
int n = 0; n < nx+2; n++) {
 
  257       control << std::scientific << std::setprecision(15)
 
  258               << std::setw(25) << 
static_cast<RealT>(n)/static_cast<RealT>(nx+1)
 
  259               << std::setw(25) << (*z_ptr)[n]
 
  265   catch (std::logic_error& err) {
 
  266     *outStream << err.what() << 
"\n";
 
  271     std::cout << 
"End Result: TEST FAILED\n";
 
  273     std::cout << 
"End Result: TEST PASSED\n";
 
Provides the ROL::Vector interface for scalar values, to be used, for example, with scalar constraint...
 
Real random(const ROL::Ptr< const Teuchos::Comm< int > > &comm)
 
basic_nullstream< char, char_traits< char >> nullstream
 
int main(int argc, char *argv[])