Example solution of a Poisson equation on a hexahedral or tetrahedral mesh using nodal (Hgrad) elements. More...
#include <unistd.h>#include <Teuchos_CommandLineProcessor.hpp>#include "Intrepid_FunctionSpaceTools.hpp"#include "Intrepid_CellTools.hpp"#include "Intrepid_ArrayTools.hpp"#include "Intrepid_Basis.hpp"#include "Intrepid_HGRAD_HEX_C1_FEM.hpp"#include "Intrepid_HGRAD_TET_C1_FEM.hpp"#include "Intrepid_RealSpaceTools.hpp"#include "Intrepid_DefaultCubatureFactory.hpp"#include "Intrepid_Utils.hpp"#include "Epetra_Time.h"#include "Epetra_Map.h"#include "Epetra_MpiComm.h"#include "Epetra_FECrsMatrix.h"#include "Epetra_FEVector.h"#include "Epetra_Import.h"#include "Teuchos_oblackholestream.hpp"#include "Teuchos_RCP.hpp"#include "Teuchos_BLAS.hpp"#include "Teuchos_GlobalMPISession.hpp"#include "Teuchos_XMLParameterListHelpers.hpp"#include "Shards_CellTopology.hpp"#include "EpetraExt_RowMatrixOut.h"#include "EpetraExt_MultiVectorOut.h"#include "AztecOO.h"#include "ml_MultiLevelPreconditioner.h"#include "ml_epetra_utils.h"#include "Sacado_No_Kokkos.hpp"#include "Ionit_Initializer.h"#include "Ioss_SubSystem.h"#include "stk_io/IossBridge.hpp"#include "stk_io/StkMeshIoBroker.hpp"#include "stk_util/parallel/Parallel.hpp"#include "stk_mesh/base/MetaData.hpp"#include "stk_mesh/base/CoordinateSystems.hpp"#include "stk_mesh/base/BulkData.hpp"#include "stk_mesh/base/Comm.hpp"#include "stk_mesh/base/Selector.hpp"#include "stk_mesh/base/GetEntities.hpp"#include "stk_mesh/base/GetBuckets.hpp"#include "stk_mesh/base/CreateAdjacentEntities.hpp"#include <stk_mesh/base/FEMHelpers.hpp>#include <stk_mesh/base/Field.hpp>#include "stk_mesh/base/Bucket.hpp"#include "stk_mesh/base/Entity.hpp"#include "stk_mesh/base/FieldBase.hpp"#include "stk_mesh/base/Types.hpp"
Functions | |
| template<typename Scalar > | |
| const Scalar | exactSolution (const Scalar &x, const Scalar &y, const Scalar &z) |
| User-defined exact solution. More... | |
| template<typename Scalar > | |
| void | materialTensor (Scalar material[][3], const Scalar &x, const Scalar &y, const Scalar &z) |
| User-defined material tensor. More... | |
| template<typename Scalar > | |
| void | exactSolutionGrad (Scalar gradExact[3], const Scalar &x, const Scalar &y, const Scalar &z) |
| Computes gradient of the exact solution. Requires user-defined exact solution. More... | |
| template<typename Scalar > | |
| const Scalar | sourceTerm (Scalar &x, Scalar &y, Scalar &z) |
| Computes source term: f = -div(A.grad u). Requires user-defined exact solution and material tensor. More... | |
| template<class ArrayOut , class ArrayIn > | |
| void | evaluateMaterialTensor (ArrayOut &worksetMaterialValues, const ArrayIn &evaluationPoints) |
| Computation of the material tensor at array of points in physical space. More... | |
| template<class ArrayOut , class ArrayIn > | |
| void | evaluateSourceTerm (ArrayOut &sourceTermValues, const ArrayIn &evaluationPoints) |
| Computation of the source term at array of points in physical space. More... | |
| template<class ArrayOut , class ArrayIn > | |
| void | evaluateExactSolution (ArrayOut &exactSolutionValues, const ArrayIn &evaluationPoints) |
| Computation of the exact solution at array of points in physical space. More... | |
| template<class ArrayOut , class ArrayIn > | |
| void | evaluateExactSolutionGrad (ArrayOut &exactSolutionGradValues, const ArrayIn &evaluationPoints) |
| Computation of the gradient of the exact solution at array of points in physical space. More... | |
| int | TestMultiLevelPreconditioner (char ProblemType[], Teuchos::ParameterList &MLList, Epetra_CrsMatrix &A, const Epetra_MultiVector &xexact, Epetra_MultiVector &b, Epetra_MultiVector &uh, double &TotalErrorResidual, double &TotalErrorExactSol) |
| void | getBasis (Teuchos::RCP< Intrepid::Basis< double, IntrepidFieldContainer > > &basis, const ShardsCellTopology &cellTopology, int order) |
| Simple factory that chooses basis function based on cell topology. More... | |
| void | mesh_read_write (const std::string &type, const std::string &working_directory, const std::string &filename, stk::io::StkMeshIoBroker &broker, int db_integer_size, stk::io::HeartbeatType hb_type) |
| int | main (int argc, char *argv[]) |
Example solution of a Poisson equation on a hexahedral or tetrahedral mesh using nodal (Hgrad) elements.
This example requires a hexahedral or tetrahedral mesh in Exodus
format with a nodeset containing boundary nodes. STK is used to
read the mesh and populate a mesh database, Intrepid is used to
build the stiffness matrix and right-hand side, and ML is used
to solve the resulting linear system.
Poisson system:
div A grad u = f in Omega
u = g on Gamma
where
A is a symmetric, positive definite material tensor
f is a given source term
Corresponding discrete linear system for nodal coefficients(x):
Kx = b
K - HGrad stiffness matrix
b - right hand side vector
| void evaluateExactSolution | ( | ArrayOut & | exactSolutionValues, |
| const ArrayIn & | evaluationPoints | ||
| ) |
Computation of the exact solution at array of points in physical space.
| exactSolutionValues | [out] Rank-2 (C,P) array with the values of the exact solution |
| evaluationPoints | [in] Rank-3 (C,P,D) array with the evaluation points in physical frame |
| void evaluateExactSolutionGrad | ( | ArrayOut & | exactSolutionGradValues, |
| const ArrayIn & | evaluationPoints | ||
| ) |
Computation of the gradient of the exact solution at array of points in physical space.
| exactSolutionGradValues | [out] Rank-3 (C,P,D) array with the values of the gradient of the exact solution |
| evaluationPoints | [in] Rank-3 (C,P,D) array with the evaluation points in physical frame |
| void evaluateMaterialTensor | ( | ArrayOut & | worksetMaterialValues, |
| const ArrayIn & | evaluationPoints | ||
| ) |
Computation of the material tensor at array of points in physical space.
| worksetMaterialValues | [out] Rank-2, 3 or 4 array with dimensions (C,P), (C,P,D) or (C,P,D,D) with the values of the material tensor |
| evaluationPoints | [in] Rank-3 (C,P,D) array with the evaluation points in physical frame |
| void evaluateSourceTerm | ( | ArrayOut & | sourceTermValues, |
| const ArrayIn & | evaluationPoints | ||
| ) |
Computation of the source term at array of points in physical space.
| sourceTermValues | [out] Rank-2 (C,P) array with the values of the source term |
| evaluationPoints | [in] Rank-3 (C,P,D) array with the evaluation points in physical frame |
| const Scalar exactSolution | ( | const Scalar & | x, |
| const Scalar & | y, | ||
| const Scalar & | z | ||
| ) |
User-defined exact solution.
| x | [in] x-coordinate of the evaluation point |
| y | [in] y-coordinate of the evaluation point |
| z | [in] z-coordinate of the evaluation point |
| void exactSolutionGrad | ( | Scalar | gradExact[3], |
| const Scalar & | x, | ||
| const Scalar & | y, | ||
| const Scalar & | z | ||
| ) |
Computes gradient of the exact solution. Requires user-defined exact solution.
| gradExact | [out] gradient of the exact solution evaluated at (x,y,z) |
| x | [in] x-coordinate of the evaluation point |
| y | [in] y-coordinate of the evaluation point |
| z | [in] z-coordinate of the evaluation point |
| void getBasis | ( | Teuchos::RCP< Intrepid::Basis< double, IntrepidFieldContainer > > & | basis, |
| const ShardsCellTopology & | cellTopology, | ||
| int | order | ||
| ) |
Simple factory that chooses basis function based on cell topology.
| cellTopology | [in] Shards cell topology |
| order | [in] basis function order, currently unused |
| basis | [out] pointer to Intrepid basis |
| void materialTensor | ( | Scalar | material[][3], |
| const Scalar & | x, | ||
| const Scalar & | y, | ||
| const Scalar & | z | ||
| ) |
User-defined material tensor.
| material | [out] 3 x 3 material tensor evaluated at (x,y,z) |
| x | [in] x-coordinate of the evaluation point |
| y | [in] y-coordinate of the evaluation point |
| z | [in] z-coordinate of the evaluation point |
| const Scalar sourceTerm | ( | Scalar & | x, |
| Scalar & | y, | ||
| Scalar & | z | ||
| ) |
Computes source term: f = -div(A.grad u). Requires user-defined exact solution and material tensor.
| x | [in] x-coordinate of the evaluation point |
| y | [in] y-coordinate of the evaluation point |
| z | [in] z-coordinate of the evaluation point |
1.8.5