Stokhos Package Browser (Single Doxygen Collection)  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Stokhos_FlatSparse3Tensor_kji.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ***********************************************************************
3 //
4 // Stokhos Package
5 // Copyright (2009) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
38 //
39 // ***********************************************************************
40 // @HEADER
41 
42 #ifndef STOKHOS_FLAT_SPARSE_3_TENSOR_KJI_HPP
43 #define STOKHOS_FLAT_SPARSE_3_TENSOR_KJI_HPP
44 
45 #include "Kokkos_Core.hpp"
46 
47 #include "Stokhos_Multiply.hpp"
48 #include "Stokhos_ProductBasis.hpp"
51 
52 //----------------------------------------------------------------------------
53 //----------------------------------------------------------------------------
54 
55 namespace Stokhos {
56 
60 template< typename ValueType , class ExecutionSpace >
62 public:
63 
64  typedef ExecutionSpace execution_space ;
65  typedef typename execution_space::size_type size_type ;
66  typedef ValueType value_type ;
67 
68 private:
69 
70  typedef Kokkos::View< size_type[] , execution_space > coord_array_type ;
71  typedef Kokkos::View< value_type[], execution_space > value_array_type ;
72  typedef Kokkos::View< size_type[], execution_space > entry_array_type ;
73  typedef Kokkos::View< size_type[], execution_space > row_map_array_type ;
74 
85 
86 
87 public:
88 
89  inline
91 
92  inline
94  m_j_coord() ,
95  m_i_coord() ,
96  m_value() ,
97  m_num_j() ,
98  m_num_i() ,
99  m_j_row_map() ,
100  m_i_row_map() ,
101  m_nnz(0) ,
102  m_dim(0) ,
103  m_flops(0) {}
104 
105  inline
107  m_j_coord( rhs.m_j_coord ) ,
108  m_i_coord( rhs.m_i_coord ) ,
109  m_value( rhs.m_value ) ,
110  m_num_j( rhs.m_num_j ) ,
111  m_num_i( rhs.m_num_i ) ,
112  m_j_row_map( rhs.m_j_row_map ) ,
113  m_i_row_map( rhs.m_i_row_map ) ,
114  m_nnz( rhs.m_nnz ) ,
115  m_dim( rhs.m_dim ) ,
116  m_flops( rhs.m_flops ) {}
117 
118  inline
120  {
121  m_j_coord = rhs.m_j_coord ;
122  m_i_coord = rhs.m_i_coord ;
123  m_value = rhs.m_value ;
124  m_num_j = rhs.m_num_j ;
125  m_num_i = rhs.m_num_i ;
126  m_j_row_map = rhs.m_j_row_map ;
127  m_i_row_map = rhs.m_i_row_map ;
128  m_nnz = rhs.m_nnz;
129  m_dim = rhs.m_dim ;
130  m_flops = rhs.m_flops ;
131  return *this ;
132  }
133 
135  KOKKOS_INLINE_FUNCTION
136  size_type dimension() const { return m_dim ; }
137 
139  KOKKOS_INLINE_FUNCTION
140  size_type num_k() const { return m_j_row_map.extent(0) - 1 ; }
141 
143  KOKKOS_INLINE_FUNCTION
145  { return m_i_coord.extent(0); }
146 
148  KOKKOS_INLINE_FUNCTION
150  { return m_j_row_map[k]; }
151 
153  KOKKOS_INLINE_FUNCTION
155  { return m_j_row_map[k] + m_num_j(k); }
156 
158  KOKKOS_INLINE_FUNCTION
160  { return m_num_j(k); }
161 
163  KOKKOS_INLINE_FUNCTION
164  const size_type& j_coord( const size_type jEntry ) const
165  { return m_j_coord( jEntry ); }
166 
168  KOKKOS_INLINE_FUNCTION
169  size_type i_begin( size_type jEntry ) const
170  { return m_i_row_map[jEntry]; }
171 
173  KOKKOS_INLINE_FUNCTION
174  size_type i_end( size_type jEntry ) const
175  { return m_i_row_map[jEntry] + m_num_i(jEntry); }
176 
178  KOKKOS_INLINE_FUNCTION
179  size_type num_i( size_type jEntry ) const
180  { return m_num_i(jEntry); }
181 
183  KOKKOS_INLINE_FUNCTION
184  const size_type& i_coord( const size_type iEntry ) const
185  { return m_i_coord( iEntry ); }
186 
188  KOKKOS_INLINE_FUNCTION
189  const value_type & value( const size_type iEntry ) const
190  { return m_value( iEntry ); }
191 
193  KOKKOS_INLINE_FUNCTION
195  { return m_nnz; }
196 
198  KOKKOS_INLINE_FUNCTION
200  { return m_flops; }
201 
202  template <typename OrdinalType>
203  static FlatSparse3Tensor_kji
207  {
209 
210  // Compute number of j's for each k
211  const size_type dimension = basis.size();
212  const size_type nk = Cijk.num_k();
213  std::vector< size_t > j_coord_work( nk , (size_t) 0 );
214  size_type j_entry_count = 0 ;
215  for (typename Cijk_type::k_iterator k_it=Cijk.k_begin();
216  k_it!=Cijk.k_end(); ++k_it) {
217  OrdinalType k = index(k_it);
218  for (typename Cijk_type::kj_iterator j_it = Cijk.j_begin(k_it);
219  j_it != Cijk.j_end(k_it); ++j_it) {
220  OrdinalType j = index(j_it);
221  if (j >= k) {
222  ++j_coord_work[k];
223  ++j_entry_count;
224  }
225  }
226  }
227 
228  // Compute number of i's for each k and j
229  std::vector< size_t > i_coord_work( j_entry_count , (size_t) 0 );
230  size_type i_entry_count = 0 ;
231  size_type j_entry = 0 ;
232  for (typename Cijk_type::k_iterator k_it=Cijk.k_begin();
233  k_it!=Cijk.k_end(); ++k_it) {
234  OrdinalType k = index(k_it);
235  for (typename Cijk_type::kj_iterator j_it = Cijk.j_begin(k_it);
236  j_it != Cijk.j_end(k_it); ++j_it) {
237  OrdinalType j = index(j_it);
238  if (j >= k) {
239  for (typename Cijk_type::kji_iterator i_it = Cijk.i_begin(j_it);
240  i_it != Cijk.i_end(j_it); ++i_it) {
241  ++i_coord_work[j_entry];
242  ++i_entry_count;
243  }
244  ++j_entry;
245  }
246  }
247  }
248 
249  /*
250  // Pad each row to have size divisible by alignment size
251  enum { Align = Kokkos::Impl::is_same<ExecutionSpace,Kokkos::Cuda>::value ? 32 : 2 };
252  for ( size_type i = 0 ; i < dimension ; ++i ) {
253  const size_t rem = coord_work[i] % Align;
254  if (rem > 0) {
255  const size_t pad = Align - rem;
256  coord_work[i] += pad;
257  entry_count += pad;
258  }
259  }
260  */
261 
262  // Allocate tensor data
263  FlatSparse3Tensor_kji tensor ;
264  tensor.m_dim = dimension;
265  tensor.m_j_coord = coord_array_type( "j_coord" , j_entry_count );
266  tensor.m_i_coord = coord_array_type( "i_coord" , i_entry_count );
267  tensor.m_value = value_array_type( "value" , i_entry_count );
268  tensor.m_num_j = entry_array_type( "num_j" , nk );
269  tensor.m_num_i = entry_array_type( "num_i" , j_entry_count );
270  tensor.m_j_row_map = row_map_array_type( "j_row_map" , nk+1 );
271  tensor.m_i_row_map = row_map_array_type( "i_row_map" , j_entry_count+1 );
272  tensor.m_flops = 3*j_entry_count + 2*i_entry_count;
273 
274  // Create mirror, is a view if is host memory
275  typename coord_array_type::HostMirror
276  host_j_coord = Kokkos::create_mirror_view( tensor.m_j_coord );
277  typename coord_array_type::HostMirror
278  host_i_coord = Kokkos::create_mirror_view( tensor.m_i_coord );
279  typename value_array_type::HostMirror
280  host_value = Kokkos::create_mirror_view( tensor.m_value );
281  typename entry_array_type::HostMirror
282  host_num_j = Kokkos::create_mirror_view( tensor.m_num_j );
283  typename entry_array_type::HostMirror
284  host_num_i = Kokkos::create_mirror_view( tensor.m_num_i );
285  typename entry_array_type::HostMirror
286  host_j_row_map = Kokkos::create_mirror_view( tensor.m_j_row_map );
287  typename entry_array_type::HostMirror
288  host_i_row_map = Kokkos::create_mirror_view( tensor.m_i_row_map );
289 
290  // Compute j row map
291  size_type sum = 0;
292  host_j_row_map(0) = 0;
293  for ( size_type k = 0 ; k < nk ; ++k ) {
294  sum += j_coord_work[k];
295  host_j_row_map(k+1) = sum;
296  host_num_j(k) = 0;
297  }
298 
299  // Compute i row map
300  sum = 0;
301  host_i_row_map(0) = 0;
302  for ( size_type j = 0 ; j < j_entry_count ; ++j ) {
303  sum += i_coord_work[j];
304  host_i_row_map(j+1) = sum;
305  host_num_i(j) = 0;
306  }
307 
308  for ( size_type k = 0 ; k < nk ; ++k ) {
309  j_coord_work[k] = host_j_row_map[k];
310  }
311  for ( size_type j = 0 ; j < j_entry_count ; ++j ) {
312  i_coord_work[j] = host_i_row_map[j];
313  }
314 
315  for (typename Cijk_type::k_iterator k_it=Cijk.k_begin();
316  k_it!=Cijk.k_end(); ++k_it) {
317  OrdinalType k = index(k_it);
318  for (typename Cijk_type::kj_iterator j_it = Cijk.j_begin(k_it);
319  j_it != Cijk.j_end(k_it); ++j_it) {
320  OrdinalType j = index(j_it);
321  if (j >= k) {
322  const size_type jEntry = j_coord_work[k];
323  ++j_coord_work[k];
324  host_j_coord(jEntry) = j ;
325  ++host_num_j(k);
326  for (typename Cijk_type::kji_iterator i_it = Cijk.i_begin(j_it);
327  i_it != Cijk.i_end(j_it); ++i_it) {
328  OrdinalType i = index(i_it);
329  ValueType c = Stokhos::value(i_it);
330  const size_type iEntry = i_coord_work[jEntry];
331  ++i_coord_work[jEntry];
332  host_value(iEntry) = (j != k) ? c : 0.5*c;
333  host_i_coord(iEntry) = i ;
334  ++host_num_i(jEntry);
335  ++tensor.m_nnz;
336  }
337  }
338  }
339  }
340 
341  // Copy data to device if necessary
342  Kokkos::deep_copy( tensor.m_j_coord , host_j_coord );
343  Kokkos::deep_copy( tensor.m_i_coord , host_i_coord );
344  Kokkos::deep_copy( tensor.m_value , host_value );
345  Kokkos::deep_copy( tensor.m_num_j , host_num_j );
346  Kokkos::deep_copy( tensor.m_num_i , host_num_i );
347  Kokkos::deep_copy( tensor.m_j_row_map , host_j_row_map );
348  Kokkos::deep_copy( tensor.m_i_row_map , host_i_row_map );
349 
350  return tensor ;
351  }
352 };
353 
354 template< class Device , typename OrdinalType , typename ValueType >
355 FlatSparse3Tensor_kji<ValueType, Device>
360 {
362  basis, Cijk, params );
363 }
364 
365 template < typename ValueType, typename Device >
366 class BlockMultiply< FlatSparse3Tensor_kji< ValueType , Device > >
367 {
368 public:
369 
370  typedef typename Device::size_type size_type ;
372 
373  template< typename MatrixValue , typename VectorValue >
374  KOKKOS_INLINE_FUNCTION
375  static void apply( const tensor_type & tensor ,
376  const MatrixValue * const a ,
377  const VectorValue * const x ,
378  VectorValue * const y )
379  {
380  const size_type nk = tensor.num_k();
381 
382  // Loop over k
383  for ( size_type k = 0; k < nk; ++k) {
384  const MatrixValue ak = a[k];
385  const VectorValue xk = x[k];
386 
387  // Loop over j for this k
388  const size_type nj = tensor.num_j(k);
389  const size_type jBeg = tensor.j_begin(k);
390  const size_type jEnd = jBeg + nj;
391  for (size_type jEntry = jBeg; jEntry < jEnd; ++jEntry) {
392  const size_type j = tensor.j_coord(jEntry);
393  VectorValue tmp = a[j] * xk + ak * x[j];
394 
395  // Loop over i for this k,j
396  const size_type ni = tensor.num_i(jEntry);
397  const size_type iBeg = tensor.i_begin(jEntry);
398  const size_type iEnd = iBeg + ni;
399  for (size_type iEntry = iBeg; iEntry < iEnd; ++iEntry) {
400  const size_type i = tensor.i_coord(iEntry);
401  y[i] += tensor.value(iEntry) * tmp;
402  }
403  }
404  }
405  }
406 
407  KOKKOS_INLINE_FUNCTION
408  static size_type matrix_size( const tensor_type & tensor )
409  { return tensor.dimension(); }
410 
411  KOKKOS_INLINE_FUNCTION
412  static size_type vector_size( const tensor_type & tensor )
413  { return tensor.dimension(); }
414 };
415 
416 } /* namespace Stokhos */
417 
418 //----------------------------------------------------------------------------
419 //----------------------------------------------------------------------------
420 
421 #endif /* #ifndef STOKHOS_FLAT_SPARSE_3_TENSOR_KJI_HPP */
static KOKKOS_INLINE_FUNCTION size_type matrix_size(const tensor_type &tensor)
KOKKOS_INLINE_FUNCTION const size_type & i_coord(const size_type iEntry) const
i coordinate for i entry &#39;iEntry&#39;
k_iterator k_begin() const
Iterator pointing to first k entry.
static KOKKOS_INLINE_FUNCTION size_type vector_size(const tensor_type &tensor)
Data structure storing a sparse 3-tensor C(i,j,k) in a a compressed format.
KOKKOS_INLINE_FUNCTION size_type i_end(size_type jEntry) const
End i entries with a j entry &#39;jEntry&#39;.
Kokkos::View< size_type[], execution_space > coord_array_type
ordinal_type num_k() const
Number of k entries in C(i,j,k)
kj_iterator j_begin(const k_iterator &k) const
Iterator pointing to first j entry for given k.
Kokkos::View< value_type[], execution_space > value_array_type
FlatSparse3Tensor_kji< ValueType, Device > create_flat_sparse_3_tensor_kji(const Stokhos::ProductBasis< OrdinalType, ValueType > &basis, const Stokhos::Sparse3Tensor< OrdinalType, ValueType > &Cijk, const Teuchos::ParameterList &params=Teuchos::ParameterList())
FlatSparse3Tensor_kji(const FlatSparse3Tensor_kji &rhs)
KOKKOS_INLINE_FUNCTION size_type num_flops() const
Number flop&#39;s per multiply-add.
kj_iterator j_end(const k_iterator &k) const
Iterator pointing to last j entry for given k.
Kokkos::View< size_type[], execution_space > row_map_array_type
KOKKOS_INLINE_FUNCTION const size_type & j_coord(const size_type jEntry) const
j coordinate for j entry &#39;jEntry&#39;
Sparse product tensor with replicated entries to provide subsets with a given coordinate.
KOKKOS_INLINE_FUNCTION size_type num_j(size_type k) const
Number of j entries with a coordinate &#39;k&#39;.
KOKKOS_INLINE_FUNCTION size_type i_begin(size_type jEntry) const
Begin i entries with a j entry &#39;jEntry&#39;.
KOKKOS_INLINE_FUNCTION size_type num_k() const
Number of k entries.
KOKKOS_INLINE_FUNCTION size_type num_i(size_type jEntry) const
Number of i entries with a j entry &#39;jEntry&#39;.
KOKKOS_INLINE_FUNCTION size_type dimension() const
Dimension of the tensor.
KOKKOS_INLINE_FUNCTION const value_type & value(const size_type iEntry) const
Value for i entry &#39;iEntry&#39;.
void deep_copy(const Stokhos::CrsMatrix< ValueType, DstDevice, Layout > &dst, const Stokhos::CrsMatrix< ValueType, SrcDevice, Layout > &src)
KOKKOS_INLINE_FUNCTION size_type j_begin(size_type k) const
Begin j entries with a coordinate &#39;k&#39;.
k_iterator k_end() const
Iterator pointing to last k entry.
static KOKKOS_INLINE_FUNCTION void apply(const tensor_type &tensor, const MatrixValue *const a, const VectorValue *const x, VectorValue *const y)
Stokhos::Sparse3Tensor< int, double > Cijk_type
Kokkos::View< size_type[], execution_space > entry_array_type
static FlatSparse3Tensor_kji create(const Stokhos::ProductBasis< OrdinalType, ValueType > &basis, const Stokhos::Sparse3Tensor< OrdinalType, ValueType > &Cijk, const Teuchos::ParameterList &params=Teuchos::ParameterList())
FlatSparse3Tensor_kji & operator=(const FlatSparse3Tensor_kji &rhs)
kji_iterator i_begin(const kj_iterator &j) const
Iterator pointing to first i entry for given j and k.
kji_iterator i_end(const kj_iterator &j) const
Iterator pointing to last i entry for given j and k.
KOKKOS_INLINE_FUNCTION size_type j_end(size_type k) const
End j entries with a coordinate &#39;k&#39;.
std::enable_if< Kokkos::is_view_uq_pce< Kokkos::View< RD, RP...> >::value &&Kokkos::is_view_uq_pce< Kokkos::View< XD, XP...> >::value >::type sum(const Kokkos::View< RD, RP...> &r, const Kokkos::View< XD, XP...> &x)
virtual ordinal_type size() const =0
Return total size of basis.
Stokhos::CrsMatrix< ValueType, Device, Layout >::HostMirror create_mirror_view(const Stokhos::CrsMatrix< ValueType, Device, Layout > &A)
KOKKOS_INLINE_FUNCTION size_type num_non_zeros() const
Number of non-zero&#39;s.
KOKKOS_INLINE_FUNCTION size_type entry_count() const
Number of sparse entries.