Stokhos Package Browser (Single Doxygen Collection)  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Stokhos_FlatSparse3Tensor.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ***********************************************************************
3 //
4 // Stokhos Package
5 // Copyright (2009) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
38 //
39 // ***********************************************************************
40 // @HEADER
41 
42 #ifndef STOKHOS_FLAT_SPARSE_3_TENSOR_HPP
43 #define STOKHOS_FLAT_SPARSE_3_TENSOR_HPP
44 
45 #include "Kokkos_Core.hpp"
46 
47 #include "Stokhos_Multiply.hpp"
48 #include "Stokhos_ProductBasis.hpp"
51 
52 
53 //----------------------------------------------------------------------------
54 //----------------------------------------------------------------------------
55 
56 namespace Stokhos {
57 
61 template< typename ValueType , class ExecutionSpace >
63 public:
64 
65  typedef ExecutionSpace execution_space ;
66  typedef typename execution_space::size_type size_type ;
67  typedef ValueType value_type ;
68 
69 private:
70 
71  typedef Kokkos::View< size_type[] , execution_space > coord_array_type ;
72  typedef Kokkos::View< value_type[], execution_space > value_array_type ;
73  typedef Kokkos::View< size_type[], execution_space > entry_array_type ;
74  typedef Kokkos::View< size_type[], execution_space > row_map_array_type ;
75 
85 
86 public:
87 
88  inline
90 
91  inline
93  m_k_coord() ,
94  m_j_coord() ,
95  m_value() ,
96  m_num_k() ,
97  m_num_j() ,
98  m_k_row_map() ,
99  m_j_row_map() ,
100  m_nnz(0) ,
101  m_flops(0) {}
102 
103  inline
105  m_k_coord( rhs.m_k_coord ) ,
106  m_j_coord( rhs.m_j_coord ) ,
107  m_value( rhs.m_value ) ,
108  m_num_k( rhs.m_num_k ) ,
109  m_num_j( rhs.m_num_j ) ,
110  m_k_row_map( rhs.m_k_row_map ) ,
111  m_j_row_map( rhs.m_j_row_map ) ,
112  m_nnz( rhs.m_nnz ) ,
113  m_flops( rhs.m_flops ) {}
114 
115  inline
117  {
118  m_k_coord = rhs.m_k_coord ;
119  m_j_coord = rhs.m_j_coord ;
120  m_value = rhs.m_value ;
121  m_num_k = rhs.m_num_k ;
122  m_num_j = rhs.m_num_j ;
123  m_k_row_map = rhs.m_k_row_map ;
124  m_j_row_map = rhs.m_j_row_map ;
125  m_nnz = rhs.m_nnz;
126  m_flops = rhs.m_flops;
127  return *this ;
128  }
129 
131  KOKKOS_INLINE_FUNCTION
132  size_type dimension() const { return m_k_row_map.extent(0) - 1 ; }
133 
135  KOKKOS_INLINE_FUNCTION
137  { return m_j_coord.extent(0); }
138 
140  KOKKOS_INLINE_FUNCTION
142  { return m_k_row_map[i]; }
143 
145  KOKKOS_INLINE_FUNCTION
147  { return m_k_row_map[i] + m_num_k(i); }
148 
150  KOKKOS_INLINE_FUNCTION
152  { return m_num_k(i); }
153 
155  KOKKOS_INLINE_FUNCTION
156  const size_type& k_coord( const size_type kEntry ) const
157  { return m_k_coord( kEntry ); }
158 
160  KOKKOS_INLINE_FUNCTION
161  size_type j_begin( size_type kEntry ) const
162  { return m_j_row_map[kEntry]; }
163 
165  KOKKOS_INLINE_FUNCTION
166  size_type j_end( size_type kEntry ) const
167  { return m_j_row_map[kEntry] + m_num_j(kEntry); }
168 
170  KOKKOS_INLINE_FUNCTION
171  size_type num_j( size_type kEntry ) const
172  { return m_num_j(kEntry); }
173 
175  KOKKOS_INLINE_FUNCTION
176  const size_type& j_coord( const size_type jEntry ) const
177  { return m_j_coord( jEntry ); }
178 
180  KOKKOS_INLINE_FUNCTION
181  const value_type & value( const size_type jEntry ) const
182  { return m_value( jEntry ); }
183 
185  KOKKOS_INLINE_FUNCTION
187  { return m_nnz; }
188 
190  KOKKOS_INLINE_FUNCTION
192  { return m_flops; }
193 
194  template <typename OrdinalType>
195  static FlatSparse3Tensor
199  {
201 
202  // Compute number of k's for each i
203  const size_type dimension = basis.size();
204  std::vector< size_t > k_coord_work( dimension , (size_t) 0 );
205  size_type k_entry_count = 0 ;
206  for (typename Cijk_type::i_iterator i_it=Cijk.i_begin();
207  i_it!=Cijk.i_end(); ++i_it) {
208  OrdinalType i = index(i_it);
209  k_coord_work[i] = Cijk.num_k(i_it);
210  k_entry_count += Cijk.num_k(i_it);
211  }
212 
213  // Compute number of j's for each i and k
214  std::vector< size_t > j_coord_work( k_entry_count , (size_t) 0 );
215  size_type j_entry_count = 0 ;
216  size_type k_entry = 0 ;
217  for (typename Cijk_type::i_iterator i_it=Cijk.i_begin();
218  i_it!=Cijk.i_end(); ++i_it) {
219  for (typename Cijk_type::ik_iterator k_it = Cijk.k_begin(i_it);
220  k_it != Cijk.k_end(i_it); ++k_it, ++k_entry) {
221  OrdinalType k = index(k_it);
222  for (typename Cijk_type::ikj_iterator j_it = Cijk.j_begin(k_it);
223  j_it != Cijk.j_end(k_it); ++j_it) {
224  OrdinalType j = index(j_it);
225  if (j >= k) {
226  ++j_coord_work[k_entry];
227  ++j_entry_count;
228  }
229  }
230  }
231  }
232 
233  /*
234  // Pad each row to have size divisible by alignment size
235  enum { Align = Kokkos::Impl::is_same<ExecutionSpace,Kokkos::Cuda>::value ? 32 : 2 };
236  for ( size_type i = 0 ; i < dimension ; ++i ) {
237  const size_t rem = coord_work[i] % Align;
238  if (rem > 0) {
239  const size_t pad = Align - rem;
240  coord_work[i] += pad;
241  entry_count += pad;
242  }
243  }
244  */
245 
246  // Allocate tensor data
247  FlatSparse3Tensor tensor ;
248  tensor.m_k_coord = coord_array_type( "k_coord" , k_entry_count );
249  tensor.m_j_coord = coord_array_type( "j_coord" , j_entry_count );
250  tensor.m_value = value_array_type( "value" , j_entry_count );
251  tensor.m_num_k = entry_array_type( "num_k" , dimension );
252  tensor.m_num_j = entry_array_type( "num_j" , k_entry_count );
253  tensor.m_k_row_map = row_map_array_type( "k_row_map" , dimension+1 );
254  tensor.m_j_row_map = row_map_array_type( "j_row_map" , k_entry_count+1 );
255 
256  // Create mirror, is a view if is host memory
257  typename coord_array_type::HostMirror
258  host_k_coord = Kokkos::create_mirror_view( tensor.m_k_coord );
259  typename coord_array_type::HostMirror
260  host_j_coord = Kokkos::create_mirror_view( tensor.m_j_coord );
261  typename value_array_type::HostMirror
262  host_value = Kokkos::create_mirror_view( tensor.m_value );
263  typename entry_array_type::HostMirror
264  host_num_k = Kokkos::create_mirror_view( tensor.m_num_k );
265  typename entry_array_type::HostMirror
266  host_num_j = Kokkos::create_mirror_view( tensor.m_num_j );
267  typename entry_array_type::HostMirror
268  host_k_row_map = Kokkos::create_mirror_view( tensor.m_k_row_map );
269  typename entry_array_type::HostMirror
270  host_j_row_map = Kokkos::create_mirror_view( tensor.m_j_row_map );
271 
272  // Compute k row map
273  size_type sum = 0;
274  host_k_row_map(0) = 0;
275  for ( size_type i = 0 ; i < dimension ; ++i ) {
276  sum += k_coord_work[i];
277  host_k_row_map(i+1) = sum;
278  host_num_k(i) = 0;
279  }
280 
281  // Compute j row map
282  sum = 0;
283  host_j_row_map(0) = 0;
284  for ( size_type i = 0 ; i < k_entry_count ; ++i ) {
285  sum += j_coord_work[i];
286  host_j_row_map(i+1) = sum;
287  host_num_j(i) = 0;
288  }
289 
290  for ( size_type i = 0 ; i < dimension ; ++i ) {
291  k_coord_work[i] = host_k_row_map[i];
292  }
293  for ( size_type i = 0 ; i < k_entry_count ; ++i ) {
294  j_coord_work[i] = host_j_row_map[i];
295  }
296 
297  for (typename Cijk_type::i_iterator i_it=Cijk.i_begin();
298  i_it!=Cijk.i_end(); ++i_it) {
299  OrdinalType i = index(i_it);
300  for (typename Cijk_type::ik_iterator k_it = Cijk.k_begin(i_it);
301  k_it != Cijk.k_end(i_it); ++k_it) {
302  OrdinalType k = index(k_it);
303  const size_type kEntry = k_coord_work[i];
304  ++k_coord_work[i];
305  host_k_coord(kEntry) = k ;
306  ++host_num_k(i);
307  for (typename Cijk_type::ikj_iterator j_it = Cijk.j_begin(k_it);
308  j_it != Cijk.j_end(k_it); ++j_it) {
309  OrdinalType j = index(j_it);
310  ValueType c = Stokhos::value(j_it);
311  if (j >= k) {
312  const size_type jEntry = j_coord_work[kEntry];
313  ++j_coord_work[kEntry];
314  host_value(jEntry) = (j != k) ? c : 0.5*c;
315  host_j_coord(jEntry) = j ;
316  ++host_num_j(kEntry);
317  ++tensor.m_nnz;
318  }
319  }
320  }
321  }
322 
323  // Copy data to device if necessary
324  Kokkos::deep_copy( tensor.m_k_coord , host_k_coord );
325  Kokkos::deep_copy( tensor.m_j_coord , host_j_coord );
326  Kokkos::deep_copy( tensor.m_value , host_value );
327  Kokkos::deep_copy( tensor.m_num_k , host_num_k );
328  Kokkos::deep_copy( tensor.m_num_j , host_num_j );
329  Kokkos::deep_copy( tensor.m_k_row_map , host_k_row_map );
330  Kokkos::deep_copy( tensor.m_j_row_map , host_j_row_map );
331 
332  tensor.m_flops = 5*tensor.m_nnz + dimension;
333 
334  return tensor ;
335  }
336 };
337 
338 template< class Device , typename OrdinalType , typename ValueType >
339 FlatSparse3Tensor<ValueType, Device>
344 {
345  return FlatSparse3Tensor<ValueType, Device>::create( basis, Cijk, params );
346 }
347 
348 template <typename ValueType, typename Device>
349 class BlockMultiply< FlatSparse3Tensor< ValueType , Device > >
350 {
351 public:
352 
353  typedef typename Device::size_type size_type ;
355 
356  template< typename MatrixValue , typename VectorValue >
357  KOKKOS_INLINE_FUNCTION
358  static void apply( const tensor_type & tensor ,
359  const MatrixValue * const a ,
360  const VectorValue * const x ,
361  VectorValue * const y )
362  {
363 
364  const size_type nDim = tensor.dimension();
365 
366  // Loop over i
367  for ( size_type i = 0; i < nDim; ++i) {
368  VectorValue ytmp = 0;
369 
370  // Loop over k for this i
371  const size_type nk = tensor.num_k(i);
372  const size_type kBeg = tensor.k_begin(i);
373  const size_type kEnd = kBeg + nk;
374  for (size_type kEntry = kBeg; kEntry < kEnd; ++kEntry) {
375  const size_type k = tensor.k_coord(kEntry);
376  const MatrixValue ak = a[k];
377  const VectorValue xk = x[k];
378 
379  // Loop over j for this i,k
380  const size_type nj = tensor.num_j(kEntry);
381  const size_type jBeg = tensor.j_begin(kEntry);
382  const size_type jEnd = jBeg + nj;
383  for (size_type jEntry = jBeg; jEntry < jEnd; ++jEntry) {
384  const size_type j = tensor.j_coord(jEntry);
385  ytmp += tensor.value(jEntry) * ( a[j] * xk + ak * x[j] );
386  }
387  }
388 
389  y[i] += ytmp ;
390  }
391  }
392 
393  KOKKOS_INLINE_FUNCTION
394  static size_type matrix_size( const tensor_type & tensor )
395  { return tensor.dimension(); }
396 
397  KOKKOS_INLINE_FUNCTION
398  static size_type vector_size( const tensor_type & tensor )
399  { return tensor.dimension(); }
400 };
401 
402 } /* namespace Stokhos */
403 
404 //----------------------------------------------------------------------------
405 //----------------------------------------------------------------------------
406 
407 #endif /* #ifndef STOKHOS_FLAT_SPARSE_3_TENSOR_HPP */
KOKKOS_INLINE_FUNCTION size_type k_end(size_type i) const
End k entries with a coordinate &#39;i&#39;.
KOKKOS_INLINE_FUNCTION size_type j_end(size_type kEntry) const
End j entries with a k entry &#39;kEntry&#39;.
KOKKOS_INLINE_FUNCTION const size_type & j_coord(const size_type jEntry) const
j coordinate for j entry &#39;jEntry&#39;
k_iterator k_begin() const
Iterator pointing to first k entry.
Data structure storing a sparse 3-tensor C(i,j,k) in a a compressed format.
KOKKOS_INLINE_FUNCTION size_type entry_count() const
Number of sparse entries.
ordinal_type num_k() const
Number of k entries in C(i,j,k)
kj_iterator j_begin(const k_iterator &k) const
Iterator pointing to first j entry for given k.
KOKKOS_INLINE_FUNCTION size_type num_non_zeros() const
Number of non-zero&#39;s.
static KOKKOS_INLINE_FUNCTION size_type matrix_size(const tensor_type &tensor)
FlatSparse3Tensor< ValueType, Device > create_flat_sparse_3_tensor(const Stokhos::ProductBasis< OrdinalType, ValueType > &basis, const Stokhos::Sparse3Tensor< OrdinalType, ValueType > &Cijk, const Teuchos::ParameterList &params=Teuchos::ParameterList())
KOKKOS_INLINE_FUNCTION size_type k_begin(size_type i) const
Begin k entries with a coordinate &#39;i&#39;.
static KOKKOS_INLINE_FUNCTION void apply(const tensor_type &tensor, const MatrixValue *const a, const VectorValue *const x, VectorValue *const y)
KOKKOS_INLINE_FUNCTION size_type num_j(size_type kEntry) const
Number of j entries with a k entry &#39;kEntry&#39;.
kj_iterator j_end(const k_iterator &k) const
Iterator pointing to last j entry for given k.
execution_space::size_type size_type
Kokkos::View< value_type[], execution_space > value_array_type
KOKKOS_INLINE_FUNCTION const size_type & k_coord(const size_type kEntry) const
k coordinate for k entry &#39;kEntry&#39;
FlatSparse3Tensor & operator=(const FlatSparse3Tensor &rhs)
KOKKOS_INLINE_FUNCTION size_type num_flops() const
Number flop&#39;s per multiply-add.
void deep_copy(const Stokhos::CrsMatrix< ValueType, DstDevice, Layout > &dst, const Stokhos::CrsMatrix< ValueType, SrcDevice, Layout > &src)
static FlatSparse3Tensor create(const Stokhos::ProductBasis< OrdinalType, ValueType > &basis, const Stokhos::Sparse3Tensor< OrdinalType, ValueType > &Cijk, const Teuchos::ParameterList &params=Teuchos::ParameterList())
k_iterator k_end() const
Iterator pointing to last k entry.
static KOKKOS_INLINE_FUNCTION size_type vector_size(const tensor_type &tensor)
Stokhos::Sparse3Tensor< int, double > Cijk_type
KOKKOS_INLINE_FUNCTION size_type num_k(size_type i) const
Number of k entries with a coordinate &#39;i&#39;.
Kokkos::View< size_type[], execution_space > entry_array_type
KOKKOS_INLINE_FUNCTION const value_type & value(const size_type jEntry) const
Value for j entry &#39;jEntry&#39;.
KOKKOS_INLINE_FUNCTION size_type dimension() const
Dimension of the tensor.
Kokkos::View< size_type[], execution_space > coord_array_type
kji_iterator i_begin(const kj_iterator &j) const
Iterator pointing to first i entry for given j and k.
FlatSparse3Tensor(const FlatSparse3Tensor &rhs)
Sparse product tensor with replicated entries to provide subsets with a given coordinate.
kji_iterator i_end(const kj_iterator &j) const
Iterator pointing to last i entry for given j and k.
KOKKOS_INLINE_FUNCTION size_type j_begin(size_type kEntry) const
Begin j entries with a k entry &#39;kEntry&#39;.
Kokkos::View< size_type[], execution_space > row_map_array_type
std::enable_if< Kokkos::is_view_uq_pce< Kokkos::View< RD, RP...> >::value &&Kokkos::is_view_uq_pce< Kokkos::View< XD, XP...> >::value >::type sum(const Kokkos::View< RD, RP...> &r, const Kokkos::View< XD, XP...> &x)
virtual ordinal_type size() const =0
Return total size of basis.
Stokhos::CrsMatrix< ValueType, Device, Layout >::HostMirror create_mirror_view(const Stokhos::CrsMatrix< ValueType, Device, Layout > &A)