ROL
step/test_05.cpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
48 #define USE_HESSVEC 1
49 
50 #include "ROL_GetTestProblems.hpp"
52 #include "ROL_Stream.hpp"
53 #include "Teuchos_GlobalMPISession.hpp"
54 
55 
56 #include <iostream>
57 
58 typedef double RealT;
59 
60 int main(int argc, char *argv[]) {
61 
62  Teuchos::GlobalMPISession mpiSession(&argc, &argv);
63 
64  // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided.
65  int iprint = argc - 1;
66  ROL::Ptr<std::ostream> outStream;
67  ROL::nullstream bhs; // outputs nothing
68  if (iprint > 0)
69  outStream = ROL::makePtrFromRef(std::cout);
70  else
71  outStream = ROL::makePtrFromRef(bhs);
72 
73  int errorFlag = 0;
74 
75  // *** Test body.
76 
77  try {
78 
79  std::string filename = "input.xml";
80 
81  auto parlist = ROL::getParametersFromXmlFile( filename );
82  parlist->sublist("General").set("Inexact Hessian-Times-A-Vector",true);
83 #if USE_HESSVEC
84  parlist->sublist("General").set("Inexact Hessian-Times-A-Vector",false);
85 #endif
86 
87  // Krylov parameters.
88  parlist->sublist("General").sublist("Krylov").set("Type", "Conjugate Residuals");
89  parlist->sublist("General").sublist("Krylov").set("Absolute Tolerance", 1.e-8);
90  parlist->sublist("General").sublist("Krylov").set("Relative Tolerance", 1.e-4);
91  parlist->sublist("General").sublist("Krylov").set("Iteration Limit", 50);
92  parlist->sublist("Step").set("Type","Primal Dual Active Set");
93 
95  // Get Objective Function
96  ROL::Ptr<ROL::Vector<RealT> > x0;
97  std::vector<ROL::Ptr<ROL::Vector<RealT> > > z;
98  ROL::Ptr<ROL::OptimizationProblem<RealT> > problem;
99  ROL::GetTestProblem<RealT>(problem,x0,z,prob);
100 
101  if (problem->getProblemType() == ROL::TYPE_B) {
102  if ( prob != ROL::TESTOPTPROBLEM_HS5 ) {
103  // PDAS parameters.
104  if (prob == ROL::TESTOPTPROBLEM_HS1 ||
105  prob == ROL::TESTOPTPROBLEM_HS2 ||
106  prob == ROL::TESTOPTPROBLEM_HS3 ||
107  prob == ROL::TESTOPTPROBLEM_HS4 ||
108  prob == ROL::TESTOPTPROBLEM_HS45) {
109  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Relative Step Tolerance",1.e-10);
110  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Relative Gradient Tolerance",1.e-8);
111  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Iteration Limit",1);
112  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Dual Scaling",1.e8);
113  }
114  else if (prob == ROL::TESTOPTPROBLEM_HS5) {
115  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Relative Step Tolerance",1.e-10);
116  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Relative Gradient Tolerance",1.e-8);
117  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Iteration Limit",10);
118  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Dual Scaling",1.e-2);
119  }
120  else if (prob == ROL::TESTOPTPROBLEM_HS25) {
121  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Relative Step Tolerance",1.e-10);
122  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Relative Gradient Tolerance",1.e-8);
123  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Iteration Limit",10);
124  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Dual Scaling",1.e10);
125  }
126  else if (prob == ROL::TESTOPTPROBLEM_HS38) {
127  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Relative Step Tolerance",1.e-10);
128  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Relative Gradient Tolerance",1.e-8);
129  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Iteration Limit",1);
130  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Dual Scaling",1.e-3);
131  }
132  else if (prob == ROL::TESTOPTPROBLEM_BVP) {
133  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Relative Step Tolerance",1.e-10);
134  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Relative Gradient Tolerance",1.e-8);
135  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Iteration Limit",1);
136  parlist->sublist("Step").sublist("Primal Dual Active Set").set("Dual Scaling",1.e0);
137  }
138  *outStream << std::endl << std::endl << ROL:: ETestOptProblemToString(prob) << std::endl << std::endl;
139 
140  // Get Dimension of Problem
141  int dim = x0->dimension();
142  parlist->sublist("General").sublist("Krylov").set("Iteration Limit", 2*dim);
143 
144  // Error Vector
145  ROL::Ptr<ROL::Vector<RealT> > e = x0->clone();
146  e->zero();
147 
148  // Define Solver
149  ROL::OptimizationSolver<RealT> solver(*problem,*parlist);
150 
151  // Run Solver
152  solver.solve(*outStream);
153 
154  // Compute Error
155  RealT err(0);
156  for (int i = 0; i < static_cast<int>(z.size()); ++i) {
157  e->set(*x0);
158  e->axpy(-1.0,*z[i]);
159  if (i == 0) {
160  err = e->norm();
161  }
162  else {
163  err = std::min(err,e->norm());
164  }
165  }
166  *outStream << std::endl << "Norm of Error: " << err << std::endl;
167 
168  // Update error flag
169  ROL::Ptr<const ROL::AlgorithmState<RealT> > state = solver.getAlgorithmState();
170  errorFlag += ((err < std::max(1.e-6*z[0]->norm(),1.e-8) || (state->gnorm < 1.e-6)) ? 0 : 1);
171  }
172  }
173  }
174  }
175  catch (std::logic_error err) {
176  *outStream << err.what() << std::endl;
177  errorFlag = -1000;
178  }; // end try
179 
180  if (errorFlag != 0)
181  std::cout << "End Result: TEST FAILED" << std::endl;
182  else
183  std::cout << "End Result: TEST PASSED" << std::endl;
184 
185  return 0;
186 
187 }
ETestOptProblem
Enumeration of test optimization problems.
Contains definitions of test objective functions.
Defines a no-output stream class ROL::NullStream and a function makeStreamPtr which either wraps a re...
std::string ETestOptProblemToString(ETestOptProblem to)
Provides a simplified interface for solving a wide range of optimization problems.
basic_nullstream< char, char_traits< char >> nullstream
Definition: ROL_Stream.hpp:72
int main(int argc, char *argv[])
int solve(const ROL::Ptr< StatusTest< Real > > &status=ROL::nullPtr, const bool combineStatus=true)
Solve optimization problem with no iteration output.
ROL::Ptr< const AlgorithmState< Real > > getAlgorithmState(void) const
Return the AlgorithmState.