ROL
function/test_05.cpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
51 #include "ROL_StdVector.hpp"
53 #include "ROL_Algorithm.hpp"
54 #include "ROL_Stream.hpp"
55 #include "Teuchos_GlobalMPISession.hpp"
56 
57 #include <iostream>
58 
59 typedef double RealT;
60 
61 
62 int main(int argc, char *argv[]) {
63 
64  Teuchos::GlobalMPISession mpiSession(&argc, &argv);
65 
66  // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided.
67  int iprint = argc - 1;
68  ROL::Ptr<std::ostream> outStream;
69  ROL::nullstream bhs; // outputs nothing
70  if (iprint > 0)
71  outStream = ROL::makePtrFromRef(std::cout);
72  else
73  outStream = ROL::makePtrFromRef(bhs);
74 
75  int errorFlag = 0;
76 
77  // *** Example body.
78 
79  try {
80 
81  ROL::Ptr<ROL::Objective<RealT> > obj;
82  ROL::Ptr<ROL::Constraint<RealT> > constr;
83  ROL::Ptr<ROL::Vector<RealT> > x;
84  ROL::Ptr<ROL::Vector<RealT> > sol;
85 
86  // Retrieve objective, constraint, iteration vector, solution vector.
88  obj = SEC.getObjective();
89  constr = SEC.getEqualityConstraint();
90  x = SEC.getInitialGuess();
91  sol = SEC.getSolution();
92 
93  // Inititalize vectors
94  int dim = 5;
95  int nc = 3;
96  RealT left = -1e0, right = 1e0;
97  ROL::Ptr<std::vector<RealT> > xtest_ptr = ROL::makePtr<std::vector<RealT>>(dim, 0.0);
98  ROL::Ptr<std::vector<RealT> > g_ptr = ROL::makePtr<std::vector<RealT>>(dim, 0.0);
99  ROL::Ptr<std::vector<RealT> > d_ptr = ROL::makePtr<std::vector<RealT>>(dim, 0.0);
100  ROL::Ptr<std::vector<RealT> > v_ptr = ROL::makePtr<std::vector<RealT>>(dim, 0.0);
101  ROL::Ptr<std::vector<RealT> > vc_ptr = ROL::makePtr<std::vector<RealT>>(nc, 0.0);
102  ROL::Ptr<std::vector<RealT> > vl_ptr = ROL::makePtr<std::vector<RealT>>(nc, 0.0);
103  ROL::StdVector<RealT> xtest(xtest_ptr);
104  ROL::StdVector<RealT> g(g_ptr);
105  ROL::StdVector<RealT> d(d_ptr);
106  ROL::StdVector<RealT> v(v_ptr);
107  ROL::StdVector<RealT> vc(vc_ptr);
108  ROL::StdVector<RealT> vl(vl_ptr);
109  // set xtest, d, v
110  for (int i=0; i<dim; i++) {
111  (*xtest_ptr)[i] = ( (RealT)rand() / (RealT)RAND_MAX ) * (right - left) + left;
112  (*d_ptr)[i] = ( (RealT)rand() / (RealT)RAND_MAX ) * (right - left) + left;
113  (*v_ptr)[i] = ( (RealT)rand() / (RealT)RAND_MAX ) * (right - left) + left;
114  }
115  // set vc, vl
116  for (int i=0; i<nc; i++) {
117  (*vc_ptr)[i] = ( (RealT)rand() / (RealT)RAND_MAX ) * (right - left) + left;
118  (*vl_ptr)[i] = ( (RealT)rand() / (RealT)RAND_MAX ) * (right - left) + left;
119  }
120 
121  xtest.set(*x);
122 
123  // Initialize nonlinear least squares objectives
124  ROL::NonlinearLeastSquaresObjective<RealT> nlls(constr,*x,vc,false);
125  ROL::NonlinearLeastSquaresObjective<RealT> gnnlls(constr,*x,vc,true);
126 
127  // Check derivatives
128  constr->checkApplyJacobian(xtest, v, vc, true, *outStream); *outStream << "\n";
129  constr->checkApplyAdjointJacobian(xtest, vl, vc, xtest, true, *outStream); *outStream << "\n";
130  constr->checkApplyAdjointHessian(xtest, vl, d, xtest, true, *outStream); *outStream << "\n";
131  nlls.checkGradient(xtest, d, true, *outStream); *outStream << "\n";
132  nlls.checkHessVec(xtest, v, true, *outStream); *outStream << "\n";
133  nlls.checkHessSym(xtest, d, v, true, *outStream); *outStream << "\n";
134 
135  // Define algorithm.
136  ROL::ParameterList parlist;
137  std::string stepname = "Trust Region";
138  parlist.sublist("Step").sublist(stepname).set("Subproblem Solver","Truncated CG");
139  parlist.sublist("Status Test").set("Gradient Tolerance",1.e-10);
140  parlist.sublist("Status Test").set("Constraint Tolerance",1.e-10);
141  parlist.sublist("Status Test").set("Step Tolerance",1.e-18);
142  parlist.sublist("Status Test").set("Iteration Limit",100);
143  ROL::Algorithm<RealT> algo(stepname, parlist);
144 
145  // Run Algorithm
146  *outStream << "\nSOLVE USING FULL HESSIAN\n";
147  x->set(xtest);
148  algo.run(*x, nlls, true, *outStream);
149  algo.reset();
150  *outStream << "\nSOLVE USING GAUSS-NEWTON HESSIAN\n";
151  x->set(xtest);
152  algo.run(*x, gnnlls, true, *outStream);
153  }
154  catch (std::logic_error err) {
155  *outStream << err.what() << "\n";
156  errorFlag = -1000;
157  }; // end try
158 
159  if (errorFlag != 0)
160  std::cout << "End Result: TEST FAILED\n";
161  else
162  std::cout << "End Result: TEST PASSED\n";
163 
164  return 0;
165 
166 }
167 
void reset(void)
Ptr< Constraint< Real > > getEqualityConstraint(void) const
virtual std::vector< std::string > run(Vector< Real > &x, Objective< Real > &obj, bool print=false, std::ostream &outStream=std::cout, bool printVectors=false, std::ostream &vectorStream=std::cout)
Run algorithm on unconstrained problems (Type-U). This is the primary Type-U interface.
Defines a no-output stream class ROL::NullStream and a function makeStreamPtr which either wraps a re...
virtual std::vector< std::vector< Real > > checkGradient(const Vector< Real > &x, const Vector< Real > &d, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
Finite-difference gradient check.
Provides the ROL::Vector interface for scalar values, to be used, for example, with scalar constraint...
Provides an interface to run optimization algorithms.
Ptr< Objective< Real > > getObjective(void) const
Contains definitions for the equality constrained NLP from Nocedal/Wright, 2nd edition, page 574, example 18.2; note the typo in reversing the initial guess and the solution.
void set(const Vector< Real > &x)
Set where .
Ptr< Vector< Real > > getSolution(const int i=0) const
basic_nullstream< char, char_traits< char >> nullstream
Definition: ROL_Stream.hpp:72
int main(int argc, char *argv[])
virtual std::vector< std::vector< Real > > checkHessVec(const Vector< Real > &x, const Vector< Real > &v, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
Finite-difference Hessian-applied-to-vector check.
Provides the interface to evaluate nonlinear least squares objective functions.
virtual std::vector< Real > checkHessSym(const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &w, const bool printToStream=true, std::ostream &outStream=std::cout)
Hessian symmetry check.
Ptr< Vector< Real > > getInitialGuess(void) const