ROL
ROL_PrimalDualInteriorPointStep.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 
45 #ifndef ROL_PRIMALDUALINTERIORPOINTSTEP_H
46 #define ROL_PRIMALDUALINTERIORPOINTSTEP_H
47 
48 #include "ROL_VectorsNorms.hpp"
52 #include "ROL_Krylov.hpp"
53 
54 
112 namespace ROL {
113 namespace InteriorPoint {
114 template <class Real>
115 class PrimalDualInteriorPointStep : public Step<Real> {
116 
117  typedef Vector<Real> V;
118  typedef PartitionedVector<Real> PV;
119  typedef Objective<Real> OBJ;
120  typedef BoundConstraint<Real> BND;
121  typedef Krylov<Real> KRYLOV;
122  typedef LinearOperator<Real> LINOP;
123  typedef LinearOperatorFromConstraint<Real> LOPEC;
124  typedef Constraint<Real> EQCON;
125  typedef StepState<Real> STATE;
126  typedef InteriorPointPenalty<Real> PENALTY;
127  typedef PrimalDualInteriorPointResidual<Real> RESIDUAL;
128 
129 private:
130 
131  ROL::Ptr<KRYLOV> krylov_; // Krylov solver for the Primal Dual system
132  ROL::Ptr<LINOP> precond_; // Preconditioner for the Primal Dual system
133 
134  ROL::Ptr<BND> pbnd_; // bound constraint for projecting x sufficiently away from the given bounds
135 
136  ROL::Ptr<V> x_; // Optimization vector
137  ROL::Ptr<V> g_; // Gradient of the Lagrangian
138  ROL::Ptr<V> l_; // Lagrange multiplier
139 
140  ROL::Ptr<V> xl_; // Lower bound vector
141  ROL::Ptr<V> xu_; // Upper bound vector
142 
143  ROL::Ptr<V> zl_; // Lagrange multiplier for lower bound
144  ROL::Ptr<V> zu_; // Lagrange multiplier for upper bound
145 
146  ROL::Ptr<V> xscratch_; // Scratch vector (size of x)
147  ROL::Ptr<V> lscratch_; // Scratch vector (size of l)
148 
149  ROL::Ptr<V> zlscratch_; // Scratch vector (size of x)
150  ROL::Ptr<V> zuscratch_; // Scratch vector (size of x)
151 
152  ROL::Ptr<V> maskL_; // Elements are 1 when xl>-INF, zero for xl = -INF
153  ROL::Ptr<V> maskU_; // Elements are 1 when xu< INF, zero for xu = INF
154 
155  int iterKrylov_;
156  int flagKrylov_;
157 
158  bool symmetrize_; // Symmetrize the Primal Dual system if true
159 
160  Elementwise::Multiply<Real> mult_;
161 
162  // Parameters used by the Primal-Dual Interior Point Method
163 
164  Real mu_; // Barrier penalty parameter
165 
166  Real eps_tol_; // Error function tolerance
167  Real tau_; // Current fraction-to-the-boundary parameter
168  Real tau_min_; // Minimum fraction-to-the-boundary parameter
169  Real kappa_eps_;
170  Real kappa_mu_;
171  Real kappa1_; // Feasibility projection parameter
172  Real kappa2_; // Feasibility projection parameter
173  Real kappa_eps_; //
174  Real lambda_max_; // multiplier maximum value
175  Real theta_mu_;
176  Real gamma_theta_;
177  Real gamma_phi_
178  Real sd_; // Lagragian gradient scaling parameter
179  Real scl_; // Lower bound complementarity scaling parameter
180  Real scu_; // Upper bound complementarity scaling parameter
181  Real smax_; // Maximum scaling parameter
182 
183  Real diml_; // Dimension of constaint
184  Real dimx_; // Dimension of optimization vector
185 
186 
187 
188  void updateState( const V& x, const V &l, OBJ &obj,
189  EQCON &con, BND &bnd, ALGO &algo_state ) {
190 
191  Real tol = std::sqrt(ROL_EPSILON<Real>());
192  ROL::Ptr<STATE> state = Step<Real>::getState();
193 
194  obj.update(x,true,algo_state.iter);
195  con.update(x,true,algo_state.iter);
196 
197  algo_state.value = obj.value(tol);
198  con.value(*(state->constraintVec),x,tol);
199 
200  obj.gradient(*(state->gradientVec),x,tol);
201  con.applyAdjointJacobian(*g_,l,x,tol);
202 
203  state->gradientVec->plus(*g_); // \f$ \nabla f(x)-\nabla c(x)\lambda \f$
204 
205  state->gradientVec->axpy(-1.0,*zl_);
206  state->gradientVec->axpy(-1.0,*zu_);
207 
208  // Scaled Lagrangian gradient sup norm
209  algo_state.gnorm = normLinf(*(state->gradientVec))/sd_;
210 
211  // Constraint sup norm
212  algo_state.cnorm = normLinf(*(state->constraintVec));
213 
214  Elementwise::Multiply<Real> mult;
215 
216  Real lowerViolation;
217  Real upperViolation;
218 
219  // Deviation from complementarity
220  xscratch_->set(x);
221  xscratch_->applyBinary(mult,*zl_);
222 
223  exactLowerViolation = normLinf(*xscratch_)/scl_;
224 
225  xscratch_->set(x);
226  xscratch_->applyBunary(mult,*zu_);
227 
228  exactUpperBound = normLinf(*xscratch_)/scu_;
229 
230  // Measure ||xz||
231  algo_state.aggregateModelError = std::max(exactLowerViolation,
232  exactUpperViolation);
233 
234  }
235 
236  /* When the constraint Jacobians are ill-conditioned, we can compute
237  multiplier vectors with very large norms, making it difficult to
238  satisfy the primal-dual equations to a small tolerance. These
239  parameters allow us to rescale the constraint qualification component
240  of the convergence criteria
241  */
242  void updateScalingParameters(void) {
243 
244  Real nl = normL1(*l_);
245  Real nzl = normL1(*zl_);
246  Real nzu = normL1(*zu_);
247 
248  sd_ = (nl+nzl+nzu)/(diml_+2*dimx);
249  sd_ = std::max(smax_,sd_)
250 
251  sd_ /= smax_;
252 
253  scl_ = nzl/dimx_;
254  scl_ = std::max(smax_,scl_);
255  scl_ /= smax_;
256 
257  scu_ = nzu/dimx_;
258  scu_ = std::max(smax_,scu_);
259  scu_ /= smax_;
260  }
261 
262 public:
263 
264  using Step<Real>::initialize;
265  using Step<Real>::compute;
266  using Step<Real>::update;
267 
268  PrimalDualInteriorPointStep( ROL::ParameterList &parlist,
269  const ROL::Ptr<Krylov<Real> > &krylov = ROL::nullPtr,
270  const ROL::Ptr<LinearOperator<Real> > &precond = ROL::nullPtr ) :
271  Step<Real>(), krylov_(krylov), precond_(precond), iterKrylov_(0), flagKrylov_(0) {
272 
273  typedef ROL::ParameterList PL;
274 
275  PL &iplist = parlist.sublist("Step").sublist("Primal Dual Interior Point");
276 
277  kappa1_ = iplist.get("Bound Perturbation Coefficient 1", 1.e-2);
278  kappa2_ = iplist.get("Bound Perturbation Coefficient 2", 1.e-2);
279  lambda_max_ = iplist.get(" Multiplier Maximum Value", 1.e3 );
280  smax_ = iplist.get("Maximum Scaling Parameter", 1.e2 );
281  tau_min_ = iplist.get("Minimum Fraction-to-Boundary Parameter", 0.99 );
282  kappa_mu_ = iplist.get("Multiplicative Penalty Reduction Factor", 0.2 );
283  theta_mu_ = iplist.get("Penalty Update Power", 1.5 );
284  eps_tol_ = iplist.get("Error Tolerance", 1.e-8);
285  symmetrize_ = iplist.get("Symmetrize Primal Dual System", true );
286 
287  PL &filter = iplist.sublist("Filter Parameters");
288 
289  if(krylov_ == ROL::nullPtr) {
290  krylov_ = KrylovFactory<Real>(parlist);
291  }
292 
293  if( precond_ == ROL::nullPtr) {
294  class IdentityOperator : public LINOP {
295  public:
296  apply( V& Hv, const V &v, Real tol ) const {
297  Hv.set(v);
298  }
299  }; // class IdentityOperator
300 
301  precond_ = ROL::makePtr<IdentityOperator<Real>>();
302  }
303 
304  }
305 
306 
307 
308  ~PrimalDualInteriorPointStep() {
309 
310 
311  void initialize( Vector<Real> &x, const Vector<Real> &g, Vector<Real> &l, const Vector<Real> &c,
312  Objective<Real> &obj, Constraint<Real> &con, BoundConstraint<Real> &bnd,
313  AlgorithmState<Real> &algo_state ) {
314 
315 
316  using Elementwise::ValueSet;
317 
318  ROL::Ptr<PENALTY> &ipPen = dynamic_cast<PENALTY&>(obj);
319 
320  // Initialize step state
321  ROL::Ptr<STATE> state = Step<Real>::getState();
322  state->descentVec = x.clone();
323  state->gradientVec = g.clone();
324  state->constaintVec = c.clone();
325 
326  diml_ = l.dimension();
327  dimx_ = x.dimension();
328 
329  Real one(1.0);
330  Real zero(0.0);
331  Real tol = std::sqrt(ROL_EPSILON<Real>());
332 
333  x_ = x.clone();
334  g_ = g.clone();
335  l_ = l.clone();
336  c_ = c.clone();
337 
338  xscratch_ = x.clone();
339  lscratch_ = l.clone();
340 
341  zlscratch_ = x.clone();
342  zuscratch_ = x.clone();
343 
344  // Multipliers for lower and upper bounds
345  zl_ = x.clone();
346  zu_ = x.clone();
347 
348  /*******************************************************************************************/
349  /* Identify (implicitly) the index sets of upper and lower bounds by creating mask vectors */
350  /*******************************************************************************************/
351 
352  xl_ = bnd.getLowerBound();
353  xu_ = bnd.getUpperBound();
354 
355  maskl_ = ipPen.getLowerMask();
356  masku_ = ipPen.getUpperMask();
357 
358  // Initialize bound constraint multipliers to 1 one where the corresponding bounds are finite
359  zl_->set(maskl_);
360  zu_->set(masku_);
361 
362  /*******************************************************************************************/
363  /* Create a new bound constraint with perturbed bounds */
364  /*******************************************************************************************/
365 
366  ROL::Ptr<V> xdiff = xu_->clone();
367  xdiff->set(*xu_);
368  xdiff->axpy(-1.0,*xl_);
369  xdiff->scale(kappa2_);
370 
371  class Max1X : public Elementwise::UnaryFunction<Real> {
372  public:
373  Real apply( const Real &x ) const {
374  return std::max(1.0,x);
375  }
376  };
377 
378  Max1X max1x;
379  Elementwise::AbsoluteValue<Real> absval;
380  Elementwise::Min min;
381 
382  // Lower perturbation vector
383  ROL::Ptr<V> pl = xl_->clone();
384  pl->applyUnary(absval);
385  pl->applyUnary(max1x); // pl_i = max(1,|xl_i|)
386  pl->scale(kappa1_);
387  pl->applyBinary(min,xdiff); // pl_i = min(kappa1*max(1,|xl_i|),kappa2*(xu_i-xl_i))
388 
389  // Upper perturbation vector
390  ROL::Ptr<V> pu = xu_->clone();
391  pu->applyUnary(absval);
392  pu->applyUnary(max1x); // pu_i = max(1,|xu_i|)
393  pu->scale(kappa_1);
394  pu->applyBinary(min,xdiff); // pu_u = min(kappa1*max(1,|xu_i|,kappa2*(xu_i-xl_i)))
395 
396  // Modified lower and upper bounds so that x in [xl+pl,xu-pu] using the above perturbation vectors
397  pl->plus(*xl_);
398  pu->scale(-1.0);
399  pu->plus(*xu_);
400 
401  pbnd_ = ROL::makePtr<BoundConstraint<Real>>(pl,pu)
402 
403  // Project the initial guess onto the perturbed bounds
404  pbnd_->project(x);
405 
406 
407  /*******************************************************************************************/
408  /* Solve least-squares problem for initial equality multiplier */
409  /*******************************************************************************************/
410 
411  // \f$-(\nabla f-z_l+z_u) \f$
412  g_->set(*zl_);
413  g_->axpy(-1.0,g);
414  g_->axpy(-1.0,*zu_)
415 
416  // We only need the updated multiplier
417  lscratch_->zero();
418  con.solveAugmentedSystem(*xscratch_,*l_,*g_,*lscratch_,x,tol);
419 
420  // If the multiplier supremum is too large, zero the vector as this appears to avoid poor
421  // initial guesses of the multiplier in the case where the constraint Jacobian is
422  // ill-conditioned
423  if( normInf(l_) > lambda_max_ ) {
424  l_->zero();
425  }
426 
427  // Initialize the algorithm state
428  algo_state.nfval = 0;
429  algo_state.ncval = 0;
430  algo_state.ngrad = 0;
431 
432  updateState(x,l,obj,con,bnd,algo_state);
433 
434  } // initialize()
435 
436 
437  void compute( Vector<Real> &s, const Vector<Real> &x, const Vector<Real> &l,
438  Objective<Real> &obj, Constraint<Real> &con,
439  BoundConstraint<Real> &bnd, AlgorithmState<Real> &algo_state ) {
440 
441 
442 
443 
444  Elementwise::Fill<Real> minus_mu(-mu_);
445  Elementwise::Divide<Real> div;
446  Elementwise::Multiply<Real> mult;
447 
448  ROL::Ptr<STATE> state = Step<Real>::getState();
449 
450  ROL::Ptr<OBJ> obj_ptr = ROL::makePtrFromRef(obj);
451  ROL::Ptr<EQCON> con_ptr = ROL::makePtrFromRef(con);
452  ROL::Ptr<BND> bnd_ptr = ROL::makePtrFromRef(bnd);
453 
454 
455  /*******************************************************************************************/
456  /* Form Primal-Dual system residual and operator then solve for direction vector */
457  /*******************************************************************************************/
458 
459 
460  ROL::Ptr<V> rhs = CreatePartitionedVector(state->gradientVec,
461  state->constraintVec,
462  resL_,
463  resU_);
464 
465  ROL::Ptr<V> sysvec = CreatePartitionedVector( x_, l_, zl_, zu_ );
466 
467 
468  ROL::Ptr<RESIDUAL> residual = ROL::makePtr<RESIDUAL>(obj,con,bnd,*sol,maskL_,maskU_,w_,mu_,symmetrize_);
469 
470  residual->value(*rhs,*sysvec,tol);
471 
472  ROL::Ptr<V> sol = CreatePartitionedVector( xscratch_, lscratch_, zlscratch_, zuscratch_ );
473 
474  LOPEC jacobian( sysvec, residual );
475 
476 
477  krylov_->run(*sol,jacobian,*residual,*precond_,iterKrylov_,flagKrylov_);
478 
479  /*******************************************************************************************/
480  /* Perform line search */
481  /*******************************************************************************************/
482 
483 
484 
485  } // compute()
486 
487 
488 
489  void update( Vector<Real> &x, Vector<Real> &l, const Vector<Real> &s,
490  Objective<Real> &obj, Constraint<Real> &con,
491  BoundConstraint<Real> &bnd, AlgorithmState<Real> &algo_state ) {
492 
493  // Check deviation from shifted complementarity
494  Elementwise::Shift<Real> minus_mu(-mu_);
495 
496  xscratch_->set(x);
497  xscratch_->applyBinary(mult,*zl_);
498  xscratch_->applyUnary(minus_mu);
499 
500  lowerViolation = normLinf(*xscratch_)/scl_; // \f$ \max_i xz_l^i - \mu \f$
501 
502  xscratch_->set(x);
503  xscratch_->applyBinary(mult,*zu_);
504  xscratch_->applyUnary(minus_mu);
505 
506  upperBound = normLinf(*xscratch_)/scu_;
507 
508  // Evaluate \f$E_\mu(x,\lambda,z_l,z_u)\f$
509  Real Emu = algo_state.gnorm;
510  Emu = std::max(Emu,algo_state.cnorm);
511  Emu = std::max(Emu,upperBound);
512  Emu = std::max(Emu,lowerBound);
513 
514  // If sufficiently converged for the current mu, update it
515  if(Emu < (kappa_epsilon_*mu_) ) {
516  Real mu_old = mu_;
517 
518  /* \mu_{j+1} = \max\left{ \frac{\epsilon_\text{tol}}{10},
519  \min\{ \kappa_{\mu} \mu_j,
520  \mu_j^{\theta_\mu}\} \right\} */
521  mu_ = std::min(kappa_mu_*mu_old,std::pow(mu_old,theta_mu_));
522  mu_ = std::max(eps_tol_/10.0,mu_);
523 
524  // Update fraction-to-boundary parameter
525  tau_ = std::max(tau_min_,1.0-mu_);
526 
527 
528 
529  }
530 
531  } // update()
532 
533 
534 
535 
536  // TODO: Implement header print out
537  std::string printHeader( void ) const {
538  std::string head("");
539  return head;
540  }
541 
542  // TODO: Implement name print out
543  std::string printName( void ) const {
544  std::string name("");
545  return name;
546  }
547 
548 
549 }; // class PrimalDualInteriorPointStep
550 
551 } // namespace InteriorPoint
552 } // namespace ROL
553 
554 
555 #endif // ROL_PRIMALDUALINTERIORPOINTSTEP_H
PartitionedVector< Real > PV
Real normLinf(const Vector< Real > &x)
ROL::Ptr< Vector< Real > > CreatePartitionedVector(const ROL::Ptr< Vector< Real >> &a)
virtual void update(const Vector< Real > &u, const Vector< Real > &z, bool flag=true, int iter=-1) override
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
Vector< Real > V
Real normL1(const Vector< Real > &x)
ROL::Ptr< StepState< Real > > getState(void)
Definition: ROL_Step.hpp:74
ROL::DiagonalOperator apply
virtual void set(const Vector &x)
Set where .
Definition: ROL_Vector.hpp:209