MueLu  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
MueLu_LocalLexicographicIndexManager_def.hpp
Go to the documentation of this file.
1 // @HEADER
2 //
3 // ***********************************************************************
4 //
5 // MueLu: A package for multigrid based preconditioning
6 // Copyright 2012 Sandia Corporation
7 //
8 // Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
9 // the U.S. Government retains certain rights in this software.
10 //
11 // Redistribution and use in source and binary forms, with or without
12 // modification, are permitted provided that the following conditions are
13 // met:
14 //
15 // 1. Redistributions of source code must retain the above copyright
16 // notice, this list of conditions and the following disclaimer.
17 //
18 // 2. Redistributions in binary form must reproduce the above copyright
19 // notice, this list of conditions and the following disclaimer in the
20 // documentation and/or other materials provided with the distribution.
21 //
22 // 3. Neither the name of the Corporation nor the names of the
23 // contributors may be used to endorse or promote products derived from
24 // this software without specific prior written permission.
25 //
26 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
27 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
30 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 //
38 // Questions? Contact
39 // Jonathan Hu (jhu@sandia.gov)
40 // Ray Tuminaro (rstumin@sandia.gov)
41 // Luc Berger-Vergoat (lberge@sandia.gov)
42 //
43 // ***********************************************************************
44 //
45 // @HEADER
46 #ifndef MUELU_LOCALLEXICOGRAPHICINDEXMANAGER_DEF_HPP_
47 #define MUELU_LOCALLEXICOGRAPHICINDEXMANAGER_DEF_HPP_
48 
50 #include <Xpetra_MapFactory.hpp>
51 
52 namespace MueLu {
53 
54  template <class LocalOrdinal, class GlobalOrdinal, class Node>
56  LocalLexicographicIndexManager(const RCP<const Teuchos::Comm<int> > comm, const bool coupled,
57  const int NumDimensions, const int interpolationOrder,
58  const int MyRank, const int NumRanks,
59  const Array<GO> GFineNodesPerDir, const Array<LO> LFineNodesPerDir,
60  const Array<LO> CoarseRate, const Array<GO> MeshData) :
61  IndexManager(comm, coupled, NumDimensions, interpolationOrder, GFineNodesPerDir, LFineNodesPerDir),
62  myRank(MyRank), numRanks(NumRanks) {
63 
64  // Allocate data based on user input
65  meshData.resize(numRanks);
67  coarseMeshData.resize(numRanks);
68 
69  // Load coarse rate, being careful about formating
70  for(int dim = 0; dim < 3; ++dim) {
71  if(dim < this->numDimensions) {
72  if(CoarseRate.size() == 1) {
73  this->coarseRate[dim] = CoarseRate[0];
74  } else if(CoarseRate.size() == this->numDimensions) {
75  this->coarseRate[dim] = CoarseRate[dim];
76  }
77  } else {
78  this->coarseRate[dim] = 1;
79  }
80  }
81 
82  // Load meshData for local lexicographic case
83  for(int rank = 0; rank < numRanks; ++rank) {
84  meshData[rank].resize(10);
85  for(int entry = 0; entry < 10; ++entry) {
86  meshData[rank][entry] = MeshData[10*rank + entry];
87  }
88  }
89 
90  if(this->coupled_) {
91  myBlock = meshData[myRank][2];
93  }
94 
95  // Start simple parameter calculation
97  for(int dim = 0; dim < 3; ++dim) {
98  this->startIndices[dim] = meshData[myRankIndex][2*dim + 3];
99  this->startIndices[dim + 3] = meshData[myRankIndex][2*dim + 4];
100  }
101 
102  this->computeMeshParameters();
105  } // Constructor
106 
107  template <class LocalOrdinal, class GlobalOrdinal, class Node>
110  this->gNumCoarseNodes10 = this->gCoarseNodesPerDir[0]*this->gCoarseNodesPerDir[1];
111  this->gNumCoarseNodes = this->gNumCoarseNodes10*this->gCoarseNodesPerDir[2];
112  }
113 
114  template <class LocalOrdinal, class GlobalOrdinal, class Node>
117  Array<LO>& ghostedNodeCoarseLIDs,
118  Array<int>& ghostedNodeCoarsePIDs,
119  Array<GO>& ghostedNodeCoarseGIDs) const {
120 
121  // First we allocated memory for the outputs
122  ghostedNodeCoarseLIDs.resize(this->getNumLocalGhostedNodes());
123  ghostedNodeCoarsePIDs.resize(this->getNumLocalGhostedNodes());
124  ghostedNodeCoarseGIDs.resize(this->numGhostedNodes);
125 
126  // Now the tricky part starts, the coarse nodes / ghosted coarse nodes need to be imported.
127  // This requires finding what their GID on the fine mesh is. They need to be ordered
128  // lexicographically to allow for fast sweeps through the mesh.
129 
130  // We loop over all ghosted coarse nodes by increasing global lexicographic order
131  Array<LO> ghostedCoarseNodeCoarseIndices(3), ghostedCoarseNodeFineIndices(3);
132  Array<LO> lCoarseNodeCoarseIndices(3);
133  Array<GO> lCoarseNodeCoarseGIDs(this->lNumCoarseNodes);
134  LO currentIndex = -1, countCoarseNodes = 0;
135  for(int k = 0; k < this->ghostedNodesPerDir[2]; ++k) {
136  for(int j = 0; j < this->ghostedNodesPerDir[1]; ++j) {
137  for(int i = 0; i < this->ghostedNodesPerDir[0]; ++i) {
138  currentIndex = k*this->numGhostedNodes10 + j*this->ghostedNodesPerDir[0] + i;
139  ghostedCoarseNodeCoarseIndices[0] = this->startGhostedCoarseNode[0] + i;
140  ghostedCoarseNodeFineIndices[0] = ghostedCoarseNodeCoarseIndices[0]*this->coarseRate[0];
141  if(ghostedCoarseNodeFineIndices[0] > this->gFineNodesPerDir[0] - 1) {
142  ghostedCoarseNodeFineIndices[0] = this->gFineNodesPerDir[0] - 1;
143  }
144  ghostedCoarseNodeCoarseIndices[1] = this->startGhostedCoarseNode[1] + j;
145  ghostedCoarseNodeFineIndices[1] = ghostedCoarseNodeCoarseIndices[1]*this->coarseRate[1];
146  if(ghostedCoarseNodeFineIndices[1] > this->gFineNodesPerDir[1] - 1) {
147  ghostedCoarseNodeFineIndices[1] = this->gFineNodesPerDir[1] - 1;
148  }
149  ghostedCoarseNodeCoarseIndices[2] = this->startGhostedCoarseNode[2] + k;
150  ghostedCoarseNodeFineIndices[2] = ghostedCoarseNodeCoarseIndices[2]*this->coarseRate[2];
151  if(ghostedCoarseNodeFineIndices[2] > this->gFineNodesPerDir[2] - 1) {
152  ghostedCoarseNodeFineIndices[2] = this->gFineNodesPerDir[2] - 1;
153  }
154 
155  GO myGID = -1, myCoarseGID = -1;
156  LO myLID = -1, myPID = -1, myCoarseLID = -1;
157  getGIDLocalLexicographic(i, j, k, ghostedCoarseNodeFineIndices, myGID, myPID, myLID);
158 
159  int rankIndex = rankIndices[myPID];
160  for(int dim = 0; dim < 3; ++dim) {
161  if(dim < this->numDimensions) {
162  lCoarseNodeCoarseIndices[dim] = ghostedCoarseNodeCoarseIndices[dim]
163  - coarseMeshData[rankIndex][3 + 2*dim];
164  }
165  }
166  LO myRankIndexCoarseNodesInDir0 = coarseMeshData[rankIndex][4]
167  - coarseMeshData[rankIndex][3] + 1;
168  LO myRankIndexCoarseNodes10 = (coarseMeshData[rankIndex][6]
169  - coarseMeshData[rankIndex][5] + 1)
170  *myRankIndexCoarseNodesInDir0;
171  myCoarseLID = lCoarseNodeCoarseIndices[2]*myRankIndexCoarseNodes10
172  + lCoarseNodeCoarseIndices[1]*myRankIndexCoarseNodesInDir0
173  + lCoarseNodeCoarseIndices[0];
174  myCoarseGID = myCoarseLID + coarseMeshData[rankIndex][9];
175 
176  ghostedNodeCoarseLIDs[currentIndex] = myCoarseLID;
177  ghostedNodeCoarsePIDs[currentIndex] = myPID;
178  ghostedNodeCoarseGIDs[currentIndex] = myCoarseGID;
179 
180  if(myPID == myRank) {
181  lCoarseNodeCoarseGIDs[countCoarseNodes] = myCoarseGID;
182  ++countCoarseNodes;
183  }
184  }
185  }
186  }
187  }
188 
189  template<class LocalOrdinal, class GlobalOrdinal, class Node>
191  getCoarseNodesData(const RCP<const Map> fineCoordinatesMap,
192  Array<GO>& coarseNodeCoarseGIDs,
193  Array<GO>& coarseNodeFineGIDs) const {
194 
195  // Allocate sufficient storage space for outputs
196  coarseNodeCoarseGIDs.resize(this->getNumLocalCoarseNodes());
197  coarseNodeFineGIDs.resize(this->getNumLocalCoarseNodes());
198 
199  // Load all the GIDs on the fine mesh
200  ArrayView<const GO> fineNodeGIDs = fineCoordinatesMap->getNodeElementList();
201 
202  Array<GO> coarseStartIndices(3);
203  for(int dim = 0; dim < 3; ++dim) {
204  coarseStartIndices[dim] = this->coarseMeshData[myRankIndex][2*dim + 3];
205  }
206 
207  // Extract the fine LIDs of the coarse nodes and store the corresponding GIDs
208  LO fineLID;
209  for(LO coarseLID = 0; coarseLID < this->getNumLocalCoarseNodes(); ++coarseLID) {
210  Array<LO> coarseIndices(3), fineIndices(3), gCoarseIndices(3);
211  this->getCoarseNodeLocalTuple(coarseLID,
212  coarseIndices[0],
213  coarseIndices[1],
214  coarseIndices[2]);
215  getCoarseNodeFineLID(coarseIndices[0],coarseIndices[1],coarseIndices[2],fineLID);
216  coarseNodeFineGIDs[coarseLID] = fineNodeGIDs[fineLID];
217 
218  LO myRankIndexCoarseNodesInDir0 = coarseMeshData[myRankIndex][4]
219  - coarseMeshData[myRankIndex][3] + 1;
220  LO myRankIndexCoarseNodes10 = (coarseMeshData[myRankIndex][6]
221  - coarseMeshData[myRankIndex][5] + 1)
222  *myRankIndexCoarseNodesInDir0;
223  LO myCoarseLID = coarseIndices[2]*myRankIndexCoarseNodes10
224  + coarseIndices[1]*myRankIndexCoarseNodesInDir0
225  + coarseIndices[0];
226  GO myCoarseGID = myCoarseLID + coarseMeshData[myRankIndex][9];
227  coarseNodeCoarseGIDs[coarseLID] = myCoarseGID;
228  }
229 
230  }
231 
232  template<class LocalOrdinal, class GlobalOrdinal, class Node>
234  getGIDLocalLexicographic(const LO iGhosted, const LO jGhosted, const LO kGhosted,
235  const Array<LO> coarseNodeFineIndices,
236  GO& myGID, LO& myPID, LO& myLID) const {
237 
238  LO ni = -1, nj = -1, li = -1, lj = -1, lk = -1;
239  LO myRankGuess = myRankIndex;
240  // We try to make a logical guess as to which PID owns the current coarse node
241  if(iGhosted == 0 && this->ghostInterface[0]) {
242  --myRankGuess;
243  } else if((iGhosted == this->ghostedNodesPerDir[0] - 1) && this->ghostInterface[1]) {
244  ++myRankGuess;
245  }
246  if(jGhosted == 0 && this->ghostInterface[2]) {
247  myRankGuess -= pi;
248  } else if((jGhosted == this->ghostedNodesPerDir[1] - 1) && this->ghostInterface[3]) {
249  myRankGuess += pi;
250  }
251  if(kGhosted == 0 && this->ghostInterface[4]) {
252  myRankGuess -= pj*pi;
253  } else if((kGhosted == this->ghostedNodesPerDir[2] - 1) && this->ghostInterface[5]) {
254  myRankGuess += pj*pi;
255  }
256  if(coarseNodeFineIndices[0] >= meshData[myRankGuess][3]
257  && coarseNodeFineIndices[0] <= meshData[myRankGuess][4]
258  && coarseNodeFineIndices[1] >= meshData[myRankGuess][5]
259  && coarseNodeFineIndices[1] <= meshData[myRankGuess][6]
260  && coarseNodeFineIndices[2] >= meshData[myRankGuess][7]
261  && coarseNodeFineIndices[2] <= meshData[myRankGuess][8]
262  && myRankGuess < numRanks - 1) {
263  myPID = meshData[myRankGuess][0];
264  ni = meshData[myRankGuess][4] - meshData[myRankGuess][3] + 1;
265  nj = meshData[myRankGuess][6] - meshData[myRankGuess][5] + 1;
266  li = coarseNodeFineIndices[0] - meshData[myRankGuess][3];
267  lj = coarseNodeFineIndices[1] - meshData[myRankGuess][5];
268  lk = coarseNodeFineIndices[2] - meshData[myRankGuess][7];
269  myLID = lk*nj*ni + lj*ni + li;
270  myGID = meshData[myRankGuess][9] + myLID;
271  } else { // The guess failed, let us use the heavy artilery: std::find_if()
272  // It could be interesting to monitor how many times this branch of the code gets
273  // used as it is far more expensive than the above one...
274  auto nodeRank = std::find_if(myBlockStart, myBlockEnd,
275  [coarseNodeFineIndices](const std::vector<GO>& vec){
276  if(coarseNodeFineIndices[0] >= vec[3]
277  && coarseNodeFineIndices[0] <= vec[4]
278  && coarseNodeFineIndices[1] >= vec[5]
279  && coarseNodeFineIndices[1] <= vec[6]
280  && coarseNodeFineIndices[2] >= vec[7]
281  && coarseNodeFineIndices[2] <= vec[8]) {
282  return true;
283  } else {
284  return false;
285  }
286  });
287  myPID = (*nodeRank)[0];
288  ni = (*nodeRank)[4] - (*nodeRank)[3] + 1;
289  nj = (*nodeRank)[6] - (*nodeRank)[5] + 1;
290  li = coarseNodeFineIndices[0] - (*nodeRank)[3];
291  lj = coarseNodeFineIndices[1] - (*nodeRank)[5];
292  lk = coarseNodeFineIndices[2] - (*nodeRank)[7];
293  myLID = lk*nj*ni + lj*ni + li;
294  myGID = (*nodeRank)[9] + myLID;
295  }
296  }
297 
298  template <class LocalOrdinal, class GlobalOrdinal, class Node>
301 
302  std::sort(meshData.begin(), meshData.end(),
303  [](const std::vector<GO>& a, const std::vector<GO>& b)->bool {
304  // The below function sorts ranks by blockID, kmin, jmin and imin
305  if(a[2] < b[2]) {
306  return true;
307  } else if(a[2] == b[2]) {
308  if(a[7] < b[7]) {
309  return true;
310  } else if(a[7] == b[7]) {
311  if(a[5] < b[5]) {
312  return true;
313  } else if(a[5] == b[5]) {
314  if(a[3] < b[3]) {return true;}
315  }
316  }
317  }
318  return false;
319  });
320 
321  numBlocks = meshData[numRanks - 1][2] + 1;
322  // Find the range of the current block
323  myBlockStart = std::lower_bound(meshData.begin(), meshData.end(), myBlock - 1,
324  [] (const std::vector<GO>& vec, const GO val)->bool {
325  return (vec[2] < val) ? true : false;
326  });
327  myBlockEnd = std::upper_bound(meshData.begin(), meshData.end(), myBlock,
328  [] (const GO val, const std::vector<GO>& vec)->bool {
329  return (val < vec[2]) ? true : false;
330  });
331  // Assuming that i,j,k and ranges are split in pi, pj and pk processors
332  // we search for these numbers as they will allow us to find quickly the PID of processors
333  // owning ghost nodes.
334  auto myKEnd = std::upper_bound(myBlockStart, myBlockEnd, (*myBlockStart)[3],
335  [] (const GO val, const std::vector<GO>& vec)->bool {
336  return (val < vec[7]) ? true : false;
337  });
338  auto myJEnd = std::upper_bound(myBlockStart, myKEnd, (*myBlockStart)[3],
339  [] (const GO val, const std::vector<GO>& vec)->bool {
340  return (val < vec[5]) ? true : false;
341  });
342  pi = std::distance(myBlockStart, myJEnd);
343  pj = std::distance(myBlockStart, myKEnd) / pi;
344  pk = std::distance(myBlockStart, myBlockEnd) / (pj*pi);
345 
346  // We also look for the index of the local rank in the current block.
347  const int MyRank = myRank;
348  myRankIndex = std::distance(meshData.begin(),
349  std::find_if(myBlockStart, myBlockEnd,
350  [MyRank] (const std::vector<GO>& vec)->bool {
351  return (vec[0] == MyRank) ? true : false;
352  })
353  );
354  // We also construct a mapping of rank to rankIndex in the meshData vector,
355  // this will allow us to access data quickly later on.
356  for(int rankIndex = 0; rankIndex < numRanks; ++rankIndex) {
357  rankIndices[meshData[rankIndex][0]] = rankIndex;
358  }
359  }
360 
361  template <class LocalOrdinal, class GlobalOrdinal, class Node>
364  Array<LO> rankOffset(3);
365  for(int rank = 0; rank < numRanks; ++rank) {
366  coarseMeshData[rank].resize(10);
367  coarseMeshData[rank][0] = meshData[rank][0];
368  coarseMeshData[rank][1] = meshData[rank][1];
369  coarseMeshData[rank][2] = meshData[rank][2];
370  for(int dim = 0; dim < 3; ++dim) {
371  coarseMeshData[rank][3 + 2*dim] = meshData[rank][3 + 2*dim] / this->coarseRate[dim];
372  if(meshData[rank][3 + 2*dim] % this->coarseRate[dim] > 0) {
373  ++coarseMeshData[rank][3 + 2*dim];
374  }
375  coarseMeshData[rank][3 + 2*dim + 1] = meshData[rank][3 + 2*dim + 1] / this->coarseRate[dim];
376  if(meshData[rank][3 + 2*dim + 1] == this->gFineNodesPerDir[dim] - 1 &&
377  meshData[rank][3 + 2*dim + 1] % this->coarseRate[dim] > 0) {
378  //this->endRate[dim] < this->coarseRate[dim]) {
379  ++coarseMeshData[rank][3 + 2*dim + 1];
380  }
381  }
382  if(rank > 0) {
383  coarseMeshData[rank][9] = coarseMeshData[rank - 1][9]
384  + (coarseMeshData[rank - 1][8] - coarseMeshData[rank - 1][7] + 1)
385  * (coarseMeshData[rank - 1][6] - coarseMeshData[rank - 1][5] + 1)
386  * (coarseMeshData[rank - 1][4] - coarseMeshData[rank - 1][3] + 1);
387  }
388  }
389  }
390 
391  template <class LocalOrdinal, class GlobalOrdinal, class Node>
392  std::vector<std::vector<GlobalOrdinal> > LocalLexicographicIndexManager<LocalOrdinal, GlobalOrdinal, Node>::
393  getCoarseMeshData() const {return coarseMeshData;}
394 
395  template <class LocalOrdinal, class GlobalOrdinal, class Node>
397  getFineNodeGlobalTuple(const GO /* myGID */, GO& /* i */, GO& /* j */, GO& /* k */) const {
398  }
399 
400  template <class LocalOrdinal, class GlobalOrdinal, class Node>
402  getFineNodeLocalTuple(const LO myLID, LO& i, LO& j, LO& k) const {
403  LO tmp;
404  k = myLID / this->lNumFineNodes10;
405  tmp = myLID % this->lNumFineNodes10;
406  j = tmp / this->lFineNodesPerDir[0];
407  i = tmp % this->lFineNodesPerDir[0];
408  }
409 
410  template <class LocalOrdinal, class GlobalOrdinal, class Node>
412  getFineNodeGhostedTuple(const LO myLID, LO& i, LO& j, LO& k) const {
413  LO tmp;
414  k = myLID / this->lNumFineNodes10;
415  tmp = myLID % this->lNumFineNodes10;
416  j = tmp / this->lFineNodesPerDir[0];
417  i = tmp % this->lFineNodesPerDir[0];
418 
419  k += this->offsets[2];
420  j += this->offsets[1];
421  i += this->offsets[0];
422  }
423 
424  template <class LocalOrdinal, class GlobalOrdinal, class Node>
426  getFineNodeGID(const GO /* i */, const GO /* j */, const GO /* k */, GO& /* myGID */) const {
427  }
428 
429  template <class LocalOrdinal, class GlobalOrdinal, class Node>
431  getFineNodeLID(const LO /* i */, const LO /* j */, const LO /* k */, LO& /* myLID */) const {
432  }
433 
434  template <class LocalOrdinal, class GlobalOrdinal, class Node>
436  getCoarseNodeGlobalTuple(const GO /* myGID */, GO& /* i */, GO& /* j */, GO& /* k */) const {
437  }
438 
439  template <class LocalOrdinal, class GlobalOrdinal, class Node>
441  getCoarseNodeLocalTuple(const LO myLID, LO& i, LO& j, LO& k) const {
442  LO tmp;
443  k = myLID / this->lNumCoarseNodes10;
444  tmp = myLID % this->lNumCoarseNodes10;
445  j = tmp / this->lCoarseNodesPerDir[0];
446  i = tmp % this->lCoarseNodesPerDir[0];
447  }
448 
449  template <class LocalOrdinal, class GlobalOrdinal, class Node>
451  getCoarseNodeGID(const GO /* i */, const GO /* j */, const GO /* k */, GO& /* myGID */) const {
452  }
453 
454  template <class LocalOrdinal, class GlobalOrdinal, class Node>
456  getCoarseNodeLID(const LO /* i */, const LO /* j */, const LO /* k */, LO& /* myLID */) const {
457  }
458 
459  template <class LocalOrdinal, class GlobalOrdinal, class Node>
461  getCoarseNodeGhostedLID(const LO i, const LO j, const LO k, LO& myLID) const {
462  myLID = k*this->numGhostedNodes10 + j*this->ghostedNodesPerDir[0] + i;
463  }
464 
465  template <class LocalOrdinal, class GlobalOrdinal, class Node>
467  getCoarseNodeFineLID(const LO i, const LO j, const LO k, LO& myLID) const {
468  // Assumptions: (i,j,k) is a tuple on the coarse mesh
469  // myLID is the corresponding local ID on the fine mesh
470  const LO multiplier[3] = {1, this->lFineNodesPerDir[0], this->lNumFineNodes10};
471  const LO indices[3] = {i, j, k};
472 
473  myLID = 0;
474  for(int dim = 0; dim < 3; ++dim) {
475  if((indices[dim] == this->getLocalCoarseNodesInDir(dim) - 1) && this->meshEdge[2*dim + 1]) {
476  // We are dealing with the last node on the mesh in direction dim
477  // so we can simply use the number of nodes on the fine mesh in that direction
478  myLID += (this->getLocalFineNodesInDir(dim) - 1)*multiplier[dim];
479  } else {
480  myLID += (indices[dim]*this->getCoarseningRate(dim) + this->getCoarseNodeOffset(dim))
481  *multiplier[dim];
482  }
483  }
484  }
485 
486  template <class LocalOrdinal, class GlobalOrdinal, class Node>
488  getGhostedNodeFineLID(const LO /* i */, const LO /* j */, const LO /* k */, LO& /* myLID */) const {
489  }
490 
491  template <class LocalOrdinal, class GlobalOrdinal, class Node>
493  getGhostedNodeCoarseLID(const LO /* i */, const LO /* j */, const LO /* k */, LO& /* myLID */) const {
494  }
495 
496 } //namespace MueLu
497 
498 #endif /* MUELU_LOCALLEXICOGRAPHICINDEXMANAGER_DEF_HPP_ */
const bool coupled_
Flag for coupled vs uncoupled aggregation mode, if true aggregation is coupled.
void getCoarseNodeGlobalTuple(const GO myGID, GO &i, GO &j, GO &k) const
void getCoarseNodeLocalTuple(const LO myLID, LO &i, LO &j, LO &k) const
void getGhostedNodesData(const RCP< const Map > fineMap, Array< LO > &ghostedNodeCoarseLIDs, Array< int > &ghostedNodeCoarsePIDs, Array< GO > &ghostedNodeCoarseGIDs) const
void getFineNodeLocalTuple(const LO myLID, LO &i, LO &j, LO &k) const
std::vector< std::vector< GO > > getCoarseMeshData() const
void getFineNodeGhostedTuple(const LO myLID, LO &i, LO &j, LO &k) const
GlobalOrdinal GO
void getGhostedNodeCoarseLID(const LO i, const LO j, const LO k, LO &myLID) const
void getGhostedNodeFineLID(const LO i, const LO j, const LO k, LO &myLID) const
int myRankIndex
local process index for record in meshData after sorting.
void getCoarseNodesData(const RCP< const Map > fineCoordinatesMap, Array< GO > &coarseNodeCoarseGIDs, Array< GO > &coarseNodeFineGIDs) const
Array< GO > startIndices
lowest global tuple (i,j,k) of a node on the local process
void getCoarseNodeFineLID(const LO i, const LO j, const LO k, LO &myLID) const
std::vector< std::vector< GO > > meshData
layout of indices accross all processes.
LocalOrdinal LO
void getCoarseNodeLID(const LO i, const LO j, const LO k, LO &myLID) const
Array< int > coarseRate
coarsening rate in each direction
void getFineNodeGlobalTuple(const GO myGID, GO &i, GO &j, GO &k) const
const int numDimensions
Number of spacial dimensions in the problem.
Array< int > rankIndices
mapping between rank ID and reordered rank ID.
void getFineNodeGID(const GO i, const GO j, const GO k, GO &myGID) const
const int numRanks
Number of ranks used to decompose the problem.
void resize(size_type new_size, const value_type &x=value_type())
void getCoarseNodeGID(const GO i, const GO j, const GO k, GO &myGID) const
void getFineNodeLID(const LO i, const LO j, const LO k, LO &myLID) const
size_type size() const
void getCoarseNodeGhostedLID(const LO i, const LO j, const LO k, LO &myLID) const
void getGIDLocalLexicographic(const LO iGhosted, const LO jGhosted, const LO kGhosted, const Array< LO > coarseNodeFineIndices, GO &myGID, LO &myPID, LO &myLID) const
Container class for mesh layout and indices calculation.
std::vector< std::vector< GO > > coarseMeshData
layout of indices accross all processes after coarsening.