EpetraExt Package Browser (Single Doxygen Collection)  Development
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
EpetraExt_ModelEvaluator.h
Go to the documentation of this file.
1 //@HEADER
2 // ***********************************************************************
3 //
4 // EpetraExt: Epetra Extended - Linear Algebra Services Package
5 // Copyright (2011) Sandia Corporation
6 //
7 // Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
8 // the U.S. Government retains certain rights in this software.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact Michael A. Heroux (maherou@sandia.gov)
38 //
39 // ***********************************************************************
40 //@HEADER
41 
42 #ifndef EPETRA_EXT_MODEL_EVALUATOR_HPP
43 #define EPETRA_EXT_MODEL_EVALUATOR_HPP
44 
45 #include "EpetraExt_ConfigDefs.h"
47 #include "Teuchos_RCP.hpp"
48 #include "Teuchos_Describable.hpp"
49 #include "Teuchos_Polynomial.hpp"
50 #include "Teuchos_Array.hpp"
52 
53 #ifdef HAVE_PYTRILINOS
54 #ifndef PyObject_HEAD
55 struct _object;
56 typedef _object PyObject;
57 #endif
58 #endif
59 
60 class Epetra_Map;
61 class Epetra_Vector;
62 class Epetra_Operator;
63 
64 // Forward declaration of Stochastic Galerkin (SG) argument types
65 namespace Stokhos {
66  class EpetraVectorOrthogPoly;
67  class EpetraMultiVectorOrthogPoly;
68  class EpetraOperatorOrthogPoly;
69  template <typename ordinal_type, typename scalar_type> class OrthogPolyBasis;
70  template <typename ordinal_type, typename scalar_type> class Quadrature;
71  template <typename ordinal_type, typename scalar_type> class StandardStorage;
72  template <typename ordinal_type, typename scalar_type, typename node_type> class OrthogPolyExpansion;
73 
74  class ProductEpetraVector;
75  class ProductEpetraMultiVector;
76  class ProductEpetraOperator;
77 }
78 
79 namespace EpetraExt {
80 
85 class ModelEvaluator : virtual public Teuchos::Describable {
86 public:
87 
90 
97 
117  ,IN_ARG_omega // < Coeff of second derivative term d(x_dotdot)/dx
121  };
122  static const int NUM_E_IN_ARGS_MEMBERS=21;
123 
127  };
128 
132  };
133 
135  class InArgs {
136  public:
137 
140 
142  InArgs();
144  std::string modelEvalDescription() const;
146  int Np() const;
148  void set_x_dot( const Teuchos::RCP<const Epetra_Vector> &x_dot );
150  void set_x_dotdot( const Teuchos::RCP<const Epetra_Vector> &x_dotdot );
156  void set_x( const Teuchos::RCP<const Epetra_Vector> &x );
159  void set_x_poly(
161  );
165  void set_x_dot_poly(
166  const Teuchos::RCP<const Teuchos::Polynomial<Epetra_Vector> > &x_dot_poly
167  );
168  void set_x_dotdot_poly(
169  const Teuchos::RCP<const Teuchos::Polynomial<Epetra_Vector> > &x_dotdot_poly
170  );
175  void set_x_sg(const sg_const_vector_t &x_sg);
177  sg_const_vector_t get_x_sg() const;
179  void set_x_dot_sg(const sg_const_vector_t &x_dot_sg);
180  void set_x_dotdot_sg(const sg_const_vector_t &x_dotdot_sg);
185  void set_x_mp(const mp_const_vector_t &x_mp);
187  mp_const_vector_t get_x_mp() const;
189  void set_x_dot_mp(const mp_const_vector_t &x_dot_mp);
190  void set_x_dotdot_mp(const mp_const_vector_t &x_dotdot_mp);
195  void set_p( int l, const Teuchos::RCP<const Epetra_Vector> &p_l );
199  void set_p_sg( int l, const sg_const_vector_t &p_sg_l );
201  sg_const_vector_t get_p_sg(int l) const;
203  void set_p_mp( int l, const mp_const_vector_t &p_mp_l );
205  mp_const_vector_t get_p_mp(int l) const;
207  void set_t( double t );
209  double get_alpha() const;
211  void set_alpha( double alpha );
214  double get_omega() const;
216  void set_omega( double omega );
217  double get_beta() const;
219  void set_beta( double beta );
221  double get_t() const;
222  double get_step_size() const;
223  void set_step_size(double step_size);
224  int get_stage_number() const;
225  void set_stage_number(int stage_number);
239  bool supports(EInArgsMembers arg) const;
241  bool supports(EInArgs_p_sg arg, int l) const;
243  bool supports(EInArgs_p_mp arg, int l) const;
244  protected:
246  void _setModelEvalDescription( const std::string &modelEvalDescription );
248  void _set_Np(int Np);
250  void _setSupports( EInArgsMembers arg, bool supports );
252  void _setSupports( EInArgs_p_sg arg, int l, bool supports );
254  void _setSupports( EInArgs_p_mp arg, int l, bool supports );
255  private:
256  // types
261  // data
278  double t_;
279  double alpha_;
280  double omega_;
281  double beta_;
282  double step_size_;
290  // functions
291  void assert_supports(EInArgsMembers arg) const;
292  void assert_supports(EInArgs_p_sg arg, int l) const;
293  void assert_supports(EInArgs_p_mp arg, int l) const;
294  void assert_l(int l) const;
295  };
296 
298  enum EEvalType {
302  };
303 
305  template<class ObjType>
306  class Evaluation : public Teuchos::RCP<ObjType> {
307  public:
312  : Teuchos::RCP<ObjType>(obj), evalType_(EVAL_TYPE_EXACT) {}
315  : Teuchos::RCP<ObjType>(obj), evalType_(evalType) {}
317  EEvalType getType() const { return evalType_; }
319  void reset( const Teuchos::RCP<ObjType> &obj, EEvalType evalType )
320  { this->operator=(obj); evalType_ = evalType; }
321  private:
323  };
324 
329  };
330 
333 
336  public:
340  {}
344  {}
347  :supportsLinearOp_(false), supportsMVByCol_(mvOrientation==DERIV_MV_BY_COL)
349  {}
353  :supportsLinearOp_(true), supportsMVByCol_(mvOrientation==DERIV_MV_BY_COL)
355  {}
358  EDerivativeMultiVectorOrientation mvOrientation1,
359  EDerivativeMultiVectorOrientation mvOrientation2
360  )
361  :supportsLinearOp_(false)
363  mvOrientation1==DERIV_MV_BY_COL||mvOrientation2==DERIV_MV_BY_COL )
365  mvOrientation1==DERIV_TRANS_MV_BY_ROW||mvOrientation2==DERIV_TRANS_MV_BY_ROW )
366  {}
369  { supportsLinearOp_ = true; return *this; }
372  {
373  switch(mvOrientation) {
374  case DERIV_MV_BY_COL: supportsMVByCol_ = true; break;
375  case DERIV_TRANS_MV_BY_ROW: supportsTransMVByRow_ = true; break;
376  default: TEUCHOS_TEST_FOR_EXCEPT(true);
377  }
378  return *this;
379  }
381  bool none() const
385  { return supportsLinearOp_; }
387  bool supports(EDerivativeMultiVectorOrientation mvOrientation) const
388  {
389  switch(mvOrientation) {
390  case DERIV_MV_BY_COL: return supportsMVByCol_;
392  default: TEUCHOS_TEST_FOR_EXCEPT(true);
393  }
395  }
396  private:
400  public:
401  };
402 
408  };
410  enum ERankStatus {
414  };
415 
429  EDerivativeLinearity in_linearity, ERankStatus in_rank, bool in_supportsAdjoint
430  ):linearity(in_linearity),rank(in_rank),supportsAdjoint(in_supportsAdjoint) {}
431  };
432 
437  public:
444  ,const Teuchos::Array<int> &paramIndexes = Teuchos::Array<int>()
445  ) : mv_(mv), orientation_(orientation), paramIndexes_(paramIndexes) {}
448  { orientation_ = orientation; };
451  { return mv_; }
454  { return orientation_; }
457  { return paramIndexes_; }
458  private:
462  };
463 
467  class Derivative {
468  public:
473  : lo_(lo) {}
478  ) : dmv_(mv,orientation) {}
481  : dmv_(dmv) {}
484  { return lo_; }
487  { return dmv_.getMultiVector(); }
490  { return dmv_.getOrientation(); }
493  { return dmv_; }
495  bool isEmpty() const
496  { return !lo_.get() && !dmv_.getMultiVector().get(); }
497  private:
500  };
501 
505  struct Preconditioner {
507  Preconditioner() : PrecOp(Teuchos::null), isAlreadyInverted(false) {}
510  bool isAlreadyInverted_ )
511  : PrecOp(PrecOp_), isAlreadyInverted(isAlreadyInverted_) {}
519  };
520 
525  public:
532  ,const Teuchos::Array<int> &paramIndexes = Teuchos::Array<int>()
533  ) : mv_(mv), orientation_(orientation), paramIndexes_(paramIndexes) {}
536  { orientation_ = orientation; };
539  { return mv_; }
542  { return orientation_; }
545  { return paramIndexes_; }
546  private:
550  };
551 
555  class SGDerivative {
556  public:
561  : lo_(lo) {}
566  ) : dmv_(mv,orientation) {}
569  : dmv_(dmv) {}
572  { return lo_; }
575  { return dmv_.getMultiVector(); }
578  { return dmv_.getOrientation(); }
581  { return dmv_; }
583  bool isEmpty() const
584  { return !lo_.get() && !dmv_.getMultiVector().get(); }
585  private:
588  };
589 
594  public:
595 
600  const mp_multivector_t &mv
602  ,const Teuchos::Array<int> &paramIndexes = Teuchos::Array<int>()
603  ) : mv_(mv), orientation_(orientation), paramIndexes_(paramIndexes) {}
606  { orientation_ = orientation; };
609  { return mv_; }
612  { return orientation_; }
615  { return paramIndexes_; }
616  private:
620  };
621 
625  class MPDerivative {
626  public:
627 
632  : lo_(lo) {}
635  const mp_multivector_t &mv
637  ) : dmv_(mv,orientation) {}
640  : dmv_(dmv) {}
643  { return lo_; }
646  { return dmv_.getMultiVector(); }
649  { return dmv_.getOrientation(); }
652  { return dmv_; }
654  bool isEmpty() const
655  { return !lo_.get() && !dmv_.getMultiVector().get(); }
656  private:
659  };
660 
671  };
672  static const int NUM_E_OUT_ARGS_MEMBERS=9;
673 
677  };
678 
682  };
683 
687  };
688 
692  };
693 
697  };
698 
702  };
703 
707  };
708 
712  };
713 
717  };
718 
722  };
723 
727  };
728 
732  };
733 
737  };
738 
742  };
743 
747  };
748 
752  };
753 
757  };
758 
760  class OutArgs {
761  public:
762 
765 
768 
770  OutArgs();
772  std::string modelEvalDescription() const;
774  int Np() const;
776  int Ng() const;
778  bool supports(EOutArgsMembers arg) const;
780  const DerivativeSupport& supports(EOutArgsDfDp arg, int l) const;
782  const DerivativeSupport& supports(EOutArgsDgDx_dot arg, int j) const;
783  const DerivativeSupport& supports(EOutArgsDgDx_dotdot arg, int j) const;
785  const DerivativeSupport& supports(EOutArgsDgDx arg, int j) const;
787  const DerivativeSupport& supports(EOutArgsDgDp arg, int j, int l) const;
789  bool supports(EOutArgs_g_sg arg, int j) const;
791  const DerivativeSupport& supports(EOutArgsDfDp_sg arg, int l) const;
793  const DerivativeSupport& supports(EOutArgsDgDx_dot_sg arg, int j) const;
794  const DerivativeSupport& supports(EOutArgsDgDx_dotdot_sg arg, int j) const;
796  const DerivativeSupport& supports(EOutArgsDgDx_sg arg, int j) const;
798  const DerivativeSupport& supports(EOutArgsDgDp_sg arg, int j, int l) const;
800  const DerivativeSupport& supports(EOutArgsDfDp_mp arg, int l) const;
802  bool supports(EOutArgs_g_mp arg, int j) const;
804  const DerivativeSupport& supports(EOutArgsDgDx_dot_mp arg, int j) const;
805  const DerivativeSupport& supports(EOutArgsDgDx_dotdot_mp arg, int j) const;
807  const DerivativeSupport& supports(EOutArgsDgDx_mp arg, int j) const;
809  const DerivativeSupport& supports(EOutArgsDgDp_mp arg, int j, int l) const;
811  void set_f( const Evaluation<Epetra_Vector> &f );
815  void set_f_sg( const sg_vector_t& f_sg );
817  sg_vector_t get_f_sg() const;
819  void set_f_mp( const mp_vector_t& f_mp );
821  mp_vector_t get_f_mp() const;
823  void set_g( int j, const Evaluation<Epetra_Vector> &g_j );
825  Evaluation<Epetra_Vector> get_g(int j) const;
828  void set_g_sg( int j, const sg_vector_t &g_sg_j );
831  sg_vector_t get_g_sg(int j) const;
834  void set_g_mp( int j, const mp_vector_t &g_mp_j );
837  mp_vector_t get_g_mp(int j) const;
839  void set_W( const Teuchos::RCP<Epetra_Operator> &W );
840  void set_WPrec( const Teuchos::RCP<Epetra_Operator> &WPrec );
848  void set_W_sg( const sg_operator_t& W_sg );
850  sg_operator_t get_W_sg() const;
852  void set_W_mp( const mp_operator_t& W_sg );
854  mp_operator_t get_W_mp() const;
856  void set_DfDp(int l, const Derivative &DfDp_l);
858  Derivative get_DfDp(int l) const;
862  void set_DfDp_sg(int l, const SGDerivative &DfDp_sg_l);
864  SGDerivative get_DfDp_sg(int l) const;
868  void set_DfDp_mp(int l, const MPDerivative &DfDp_mp_l);
870  MPDerivative get_DfDp_mp(int l) const;
874  void set_DgDx_dot(int j, const Derivative &DgDx_dot_j);
875  void set_DgDx_dotdot(int j, const Derivative &DgDx_dotdot_j);
877  Derivative get_DgDx_dot(int j) const;
878  Derivative get_DgDx_dotdot(int j) const;
883  void set_DgDx_dot_sg(int j, const SGDerivative &DgDx_dot_j);
884  void set_DgDx_dotdot_sg(int j, const SGDerivative &DgDx_dotdot_j);
886  SGDerivative get_DgDx_dot_sg(int j) const;
887  SGDerivative get_DgDx_dotdot_sg(int j) const;
892  void set_DgDx_dot_mp(int j, const MPDerivative &DgDx_dot_j);
893  void set_DgDx_dotdot_mp(int j, const MPDerivative &DgDx_dotdot_j);
895  MPDerivative get_DgDx_dot_mp(int j) const;
896  MPDerivative get_DgDx_dotdot_mp(int j) const;
901  void set_DgDx(int j, const Derivative &DgDx_j);
903  Derivative get_DgDx(int j) const;
907  void set_DgDx_sg(int j, const SGDerivative &DgDx_j);
909  SGDerivative get_DgDx_sg(int j) const;
913  void set_DgDx_mp(int j, const MPDerivative &DgDx_j);
915  MPDerivative get_DgDx_mp(int j) const;
919  void set_DgDp( int j, int l, const Derivative &DgDp_j_l );
921  Derivative get_DgDp(int j, int l) const;
923  DerivativeProperties get_DgDp_properties(int j, int l) const;
925  void set_DgDp_sg( int j, int l, const SGDerivative &DgDp_sg_j_l );
927  SGDerivative get_DgDp_sg(int j, int l) const;
929  DerivativeProperties get_DgDp_sg_properties(int j, int l) const;
931  void set_DgDp_mp( int j, int l, const MPDerivative &DgDp_mp_j_l );
933  MPDerivative get_DgDp_mp(int j, int l) const;
935  DerivativeProperties get_DgDp_mp_properties(int j, int l) const;
936 
941 
942 
944  bool funcOrDerivesAreSet(EOutArgsMembers arg) const;
945 
951  void setFailed() const;
957  bool isFailed() const;
958 
959  protected:
961  void _setModelEvalDescription( const std::string &modelEvalDescription );
963  void _set_Np_Ng(int Np, int Ng);
965  void _setSupports( EOutArgsMembers arg, bool supports );
967  void _setSupports( EOutArgsDfDp arg, int l, const DerivativeSupport& );
969  void _setSupports( EOutArgsDgDx_dot arg, int j, const DerivativeSupport& );
970  void _setSupports( EOutArgsDgDx_dotdot arg, int j, const DerivativeSupport& );
972  void _setSupports( EOutArgsDgDx arg, int j, const DerivativeSupport& );
974  void _setSupports( EOutArgsDgDp arg, int j, int l, const DerivativeSupport& );
976  void _setSupports( EOutArgs_g_sg arg, int j, bool supports );
978  void _setSupports( EOutArgsDfDp_sg arg, int l, const DerivativeSupport& );
980  void _setSupports( EOutArgsDgDx_dot_sg arg, int j, const DerivativeSupport& );
981  void _setSupports( EOutArgsDgDx_dotdot_sg arg, int j, const DerivativeSupport& );
983  void _setSupports( EOutArgsDgDx_sg arg, int j, const DerivativeSupport& );
985  void _setSupports( EOutArgsDgDp_sg arg, int j, int l, const DerivativeSupport& );
986 
988  void _setSupports( EOutArgs_g_mp arg, int j, bool supports );
990  void _setSupports( EOutArgsDfDp_mp arg, int l, const DerivativeSupport& );
992  void _setSupports( EOutArgsDgDx_dot_mp arg, int j, const DerivativeSupport& );
993  void _setSupports( EOutArgsDgDx_dotdot_mp arg, int j, const DerivativeSupport& );
995  void _setSupports( EOutArgsDgDx_mp arg, int j, const DerivativeSupport& );
997  void _setSupports( EOutArgsDgDp_mp arg, int j, int l, const DerivativeSupport& );
999  void _set_W_properties( const DerivativeProperties &W_properties );
1000  void _set_WPrec_properties( const DerivativeProperties &WPrec_properties );
1002  void _set_DfDp_properties( int l, const DerivativeProperties &properties );
1004  void _set_DgDx_dot_properties( int j, const DerivativeProperties &properties );
1005  void _set_DgDx_dotdot_properties( int j, const DerivativeProperties &properties );
1007  void _set_DgDx_properties( int j, const DerivativeProperties &properties );
1009  void _set_DgDp_properties( int j, int l, const DerivativeProperties &properties );
1011  void _set_DfDp_sg_properties( int l, const DerivativeProperties &properties );
1013  void _set_DgDx_dot_sg_properties( int j, const DerivativeProperties &properties );
1014  void _set_DgDx_dotdot_sg_properties( int j, const DerivativeProperties &properties );
1016  void _set_DgDx_sg_properties( int j, const DerivativeProperties &properties );
1018  void _set_DgDp_sg_properties( int j, int l, const DerivativeProperties &properties );
1019 
1021  void _set_DfDp_mp_properties( int l, const DerivativeProperties &properties );
1023  void _set_DgDx_dot_mp_properties( int j, const DerivativeProperties &properties );
1024  void _set_DgDx_dotdot_mp_properties( int j, const DerivativeProperties &properties );
1026  void _set_DgDx_mp_properties( int j, const DerivativeProperties &properties );
1028  void _set_DgDp_mp_properties( int j, int l, const DerivativeProperties &properties );
1029  private:
1030  // types
1040  // data
1042  mutable bool isFailed_;
1060  supports_t supports_DgDp_mp_; // Ng_mp x Np_mp
1077  deriv_t DgDp_; // Ng x Np
1090  sg_deriv_t DgDp_sg_; // Ng x Np
1102  mp_deriv_t DgDp_mp_; // Ng x Np
1104  // functions
1105  void assert_supports(EOutArgsMembers arg) const;
1106  void assert_supports(EOutArgsDfDp arg, int l) const;
1107  void assert_supports(EOutArgsDgDx_dot arg, int j) const;
1108  void assert_supports(EOutArgsDgDx_dotdot arg, int j) const;
1109  void assert_supports(EOutArgsDgDx arg, int j) const;
1110  void assert_supports(EOutArgsDgDp arg, int j, int l) const;
1111  void assert_supports(EOutArgs_g_sg arg, int j) const;
1112  void assert_supports(EOutArgsDfDp_sg arg, int l) const;
1113  void assert_supports(EOutArgsDgDx_dot_sg arg, int j) const;
1114  void assert_supports(EOutArgsDgDx_dotdot_sg arg, int j) const;
1115  void assert_supports(EOutArgsDgDx_sg arg, int j) const;
1116  void assert_supports(EOutArgsDgDp_sg arg, int j, int l) const;
1117  void assert_supports(EOutArgs_g_mp arg, int j) const;
1118  void assert_supports(EOutArgsDfDp_mp arg, int l) const;
1119  void assert_supports(EOutArgsDgDx_dot_mp arg, int j) const;
1120  void assert_supports(EOutArgsDgDx_dotdot_mp arg, int j) const;
1121  void assert_supports(EOutArgsDgDx_mp arg, int j) const;
1122  void assert_supports(EOutArgsDgDp_mp arg, int j, int l) const;
1123  void assert_l(int l) const;
1124  void assert_j(int j) const;
1125  };
1126 
1128 
1131 
1133  virtual ~ModelEvaluator();
1134 
1136 
1139 
1141  virtual Teuchos::RCP<const Epetra_Map> get_x_map() const = 0;
1142 
1144  virtual Teuchos::RCP<const Epetra_Map> get_f_map() const = 0;
1145 
1147  virtual Teuchos::RCP<const Epetra_Map> get_p_map(int l) const;
1148 
1164 
1166  virtual Teuchos::RCP<const Epetra_Map> get_g_map(int j) const;
1167 
1183 
1185 
1188 
1191 
1194 
1197 
1199  virtual Teuchos::RCP<const Epetra_Vector> get_p_init(int l) const;
1200 
1202  virtual double get_t_init() const;
1203 
1205 
1208 
1213  virtual double getInfBound() const;
1214 
1217 
1220 
1223 
1226 
1228  virtual double get_t_lower_bound() const;
1229 
1231  virtual double get_t_upper_bound() const;
1232 
1234 
1237 
1244  virtual Teuchos::RCP<Epetra_Operator> create_W() const;
1246 
1248  virtual Teuchos::RCP<Epetra_Operator> create_DfDp_op(int l) const;
1249 
1252 
1255 
1257  virtual Teuchos::RCP<Epetra_Operator> create_DgDx_op(int j) const;
1258 
1260  virtual Teuchos::RCP<Epetra_Operator> create_DgDp_op( int j, int l ) const;
1261 
1263 
1266 
1268  virtual InArgs createInArgs() const = 0;
1269 
1271  virtual OutArgs createOutArgs() const = 0;
1272 
1274  virtual void evalModel( const InArgs& inArgs, const OutArgs& outArgs ) const = 0;
1275 
1276 #ifdef HAVE_PYTRILINOS
1277 
1278  friend InArgs convertInArgsFromPython(PyObject * source);
1279 
1281  friend OutArgs convertOutArgsFromPython(PyObject * source);
1282 #endif
1283 
1284 
1285 protected:
1286 
1289 
1291  class InArgsSetup : public InArgs {
1292  public:
1294  void setModelEvalDescription( const std::string &modelEvalDescription );
1296  void set_Np(int Np);
1298  void setSupports( EInArgsMembers arg, bool supports = true );
1300  void setSupports( EInArgs_p_sg arg, int l, bool supports );
1302  void setSupports( EInArgs_p_mp arg, int l, bool supports );
1303  };
1304 
1306  class OutArgsSetup : public OutArgs {
1307  public:
1309  void setModelEvalDescription( const std::string &modelEvalDescription );
1311  void set_Np_Ng(int Np, int Ng);
1313  void setSupports( EOutArgsMembers arg, bool supports = true );
1315  void setSupports(EOutArgsDfDp arg, int l, const DerivativeSupport& );
1317  void setSupports(EOutArgsDgDx_dot arg, int j, const DerivativeSupport& );
1318  void setSupports(EOutArgsDgDx_dotdot arg, int j, const DerivativeSupport& );
1320  void setSupports(EOutArgsDgDx arg, int j, const DerivativeSupport& );
1322  void setSupports(EOutArgsDgDp arg, int j, int l, const DerivativeSupport& );
1324  void setSupports( EOutArgs_g_sg arg, int j, bool supports );
1326  void setSupports(EOutArgsDfDp_sg arg, int l, const DerivativeSupport& );
1328  void setSupports(EOutArgsDgDx_dot_sg arg, int j, const DerivativeSupport& );
1329  void setSupports(EOutArgsDgDx_dotdot_sg arg, int j, const DerivativeSupport& );
1331  void setSupports(EOutArgsDgDx_sg arg, int j, const DerivativeSupport& );
1333  void setSupports(EOutArgsDgDp_sg arg, int j, int l, const DerivativeSupport& );
1335  void setSupports( EOutArgs_g_mp arg, int j, bool supports );
1337  void setSupports(EOutArgsDfDp_mp arg, int l, const DerivativeSupport& );
1339  void setSupports(EOutArgsDgDx_dot_mp arg, int j, const DerivativeSupport& );
1340  void setSupports(EOutArgsDgDx_dotdot_mp arg, int j, const DerivativeSupport& );
1342  void setSupports(EOutArgsDgDx_mp arg, int j, const DerivativeSupport& );
1344  void setSupports(EOutArgsDgDp_mp arg, int j, int l, const DerivativeSupport& );
1346  void set_W_properties( const DerivativeProperties &properties );
1347  void set_WPrec_properties( const DerivativeProperties &properties );
1349  void set_DfDp_properties( int l, const DerivativeProperties &properties );
1351  void set_DgDx_dot_properties( int j, const DerivativeProperties &properties );
1352  void set_DgDx_dotdot_properties( int j, const DerivativeProperties &properties );
1354  void set_DgDx_properties( int j, const DerivativeProperties &properties );
1356  void set_DgDp_properties( int j, int l, const DerivativeProperties &properties );
1358  void set_DfDp_sg_properties( int l, const DerivativeProperties &properties );
1360  void set_DgDx_dot_sg_properties( int j, const DerivativeProperties &properties );
1361  void set_DgDx_dotdot_sg_properties( int j, const DerivativeProperties &properties );
1363  void set_DgDx_sg_properties( int j, const DerivativeProperties &properties );
1365  void set_DgDp_sg_properties( int j, int l, const DerivativeProperties &properties );
1367  void set_DfDp_mp_properties( int l, const DerivativeProperties &properties );
1369  void set_DgDx_dot_mp_properties( int j, const DerivativeProperties &properties );
1370  void set_DgDx_dotdot_mp_properties( int j, const DerivativeProperties &properties );
1372  void set_DgDx_mp_properties( int j, const DerivativeProperties &properties );
1374  void set_DgDp_mp_properties( int j, int l, const DerivativeProperties &properties );
1375  };
1376 
1378 
1379 };
1380 
1381 // ////////////////////////////
1382 // Helper functions
1383 
1386 
1388 std::string toString( ModelEvaluator::EInArgsMembers inArg );
1389 
1391 std::string toString( ModelEvaluator::EOutArgsMembers outArg );
1392 
1395 getLinearOp(
1396  const std::string &modelEvalDescription,
1397  const ModelEvaluator::Derivative &deriv,
1398  const std::string &derivName
1399  );
1400 
1404  const std::string &modelEvalDescription,
1405  const ModelEvaluator::Derivative &deriv,
1406  const std::string &derivName,
1408  );
1409 
1412 get_DfDp_op(
1413  const int l
1414  ,const ModelEvaluator::OutArgs &outArgs
1415  );
1416 
1419 get_DfDp_mv(
1420  const int l
1421  ,const ModelEvaluator::OutArgs &outArgs
1422  );
1423 
1427  const int j
1428  ,const ModelEvaluator::OutArgs &outArgs
1430  );
1431 
1435  const int j
1436  ,const ModelEvaluator::OutArgs &outArgs
1438  );
1439 
1442 get_DgDx_mv(
1443  const int j
1444  ,const ModelEvaluator::OutArgs &outArgs
1446  );
1447 
1450 get_DgDp_mv(
1451  const int j
1452  ,const int l
1453  ,const ModelEvaluator::OutArgs &outArgs
1455  );
1456 
1457 // ///////////////////////////
1458 // Inline Functions
1459 
1460 //
1461 // ModelEvaluator::InArgs
1462 //
1463 
1464 inline
1466 { return modelEvalDescription_; }
1467 
1468 inline
1470 { return p_.size(); }
1471 
1472 inline
1474 { assert_supports(IN_ARG_x_dot); x_dot_ = x_dot; }
1475 
1476 inline
1478 { assert_supports(IN_ARG_x_dotdot); x_dotdot_ = x_dotdot; }
1479 
1480 inline
1482 { assert_supports(IN_ARG_x_dot); return x_dot_; }
1483 
1484 inline
1486 { assert_supports(IN_ARG_x_dotdot); return x_dotdot_; }
1487 
1488 inline
1490 { assert_supports(IN_ARG_x); x_ = x; }
1491 
1492 inline
1494 { assert_supports(IN_ARG_x); return x_; }
1495 
1496 inline
1498 { assert_supports(IN_ARG_x_dot_poly); x_dot_poly_ = x_dot_poly; }
1499 
1500 inline
1502 { assert_supports(IN_ARG_x_dotdot_poly); x_dotdot_poly_ = x_dotdot_poly; }
1503 
1504 inline
1507 { assert_supports(IN_ARG_x_dot_poly); return x_dot_poly_; }
1508 
1509 inline
1512 { assert_supports(IN_ARG_x_dotdot_poly); return x_dotdot_poly_; }
1513 
1514 inline
1516 { assert_supports(IN_ARG_x_poly); x_poly_ = x_poly; }
1517 
1518 inline
1521 { assert_supports(IN_ARG_x_poly); return x_poly_; }
1522 
1523 inline
1525 { assert_supports(IN_ARG_x_dot_sg); x_dot_sg_ = x_dot_sg; }
1526 
1527 inline
1529 { assert_supports(IN_ARG_x_dotdot_sg); x_dotdot_sg_ = x_dotdot_sg; }
1530 
1531 inline
1534 { assert_supports(IN_ARG_x_dot_sg); return x_dot_sg_; }
1535 
1536 inline
1539 { assert_supports(IN_ARG_x_dotdot_sg); return x_dotdot_sg_; }
1540 
1541 inline
1543 { assert_supports(IN_ARG_x_dot_mp); x_dot_mp_ = x_dot_mp; }
1544 
1545 inline
1547 { assert_supports(IN_ARG_x_dotdot_mp); x_dotdot_mp_ = x_dotdot_mp; }
1548 
1549 inline
1552 { assert_supports(IN_ARG_x_dot_mp); return x_dot_mp_; }
1553 
1554 inline
1557 { assert_supports(IN_ARG_x_dotdot_mp); return x_dotdot_mp_; }
1558 
1559 inline
1561 { assert_supports(IN_ARG_x_sg); x_sg_ = x_sg; }
1562 
1563 inline
1566 { assert_supports(IN_ARG_x_sg); return x_sg_; }
1567 
1568 inline
1570 { assert_supports(IN_ARG_x_mp); x_mp_ = x_mp; }
1571 
1572 inline
1575 { assert_supports(IN_ARG_x_mp); return x_mp_; }
1576 
1577 inline
1579 { assert_l(l); p_[l] = p_l; }
1580 
1581 inline
1583 { assert_l(l); return p_[l]; }
1584 
1585 inline
1588 { assert_supports(IN_ARG_p_sg, l); p_sg_[l] = p_sg_l; }
1589 
1590 inline
1593 { assert_supports(IN_ARG_p_sg, l); return p_sg_[l]; }
1594 
1595 inline
1597  const ModelEvaluator::mp_const_vector_t &p_mp_l )
1598 { assert_supports(IN_ARG_p_mp, l); p_mp_[l] = p_mp_l; }
1599 
1600 inline
1603 { assert_supports(IN_ARG_p_mp, l); return p_mp_[l]; }
1604 
1605 inline
1607 { assert_supports(IN_ARG_t); t_ = t; }
1608 
1609 inline
1611 { assert_supports(IN_ARG_t); return t_; }
1612 
1613 inline
1615 { assert_supports(IN_ARG_alpha); alpha_ = alpha; }
1616 
1617 inline
1619 { assert_supports(IN_ARG_alpha); return alpha_; }
1620 
1621 inline
1623 { assert_supports(IN_ARG_omega); omega_ = omega; }
1624 
1625 inline
1627 { assert_supports(IN_ARG_omega); return omega_; }
1628 
1629 inline
1631 { assert_supports(IN_ARG_beta); beta_ = beta; }
1632 
1633 inline
1635 { assert_supports(IN_ARG_beta); return beta_; }
1636 
1637 inline
1639 { assert_supports(IN_ARG_step_size); step_size_ = step_size; }
1640 
1641 inline
1643 { assert_supports(IN_ARG_step_size); return step_size_; }
1644 
1645 inline
1647 { assert_supports(IN_ARG_stage_number); stage_number_ = stage_number; }
1648 
1649 inline
1651 { assert_supports(IN_ARG_stage_number); return stage_number_; }
1652 
1653  inline
1655 { assert_supports(IN_ARG_sg_basis); sg_basis_ = basis; }
1656 
1657 inline
1660 { assert_supports(IN_ARG_sg_basis); return sg_basis_; }
1661 
1662 inline
1664 { assert_supports(IN_ARG_sg_quadrature); sg_quad_ = quad; }
1665 
1666 inline
1669 { assert_supports(IN_ARG_sg_quadrature); return sg_quad_; }
1670 
1671 inline
1673 { assert_supports(IN_ARG_sg_expansion); sg_exp_ = exp; }
1674 
1675 inline
1678 { assert_supports(IN_ARG_sg_expansion); return sg_exp_; }
1679 
1680 inline
1681 void ModelEvaluator::InArgs::_setModelEvalDescription( const std::string &new_modelEvalDescription )
1682 {
1683  modelEvalDescription_ = new_modelEvalDescription;
1684 }
1685 
1686 inline
1688 {
1689  p_.resize(new_Np);
1690  p_sg_.resize(new_Np);
1691  p_mp_.resize(new_Np);
1692  supports_p_sg_.resize(new_Np);
1693  supports_p_mp_.resize(new_Np);
1694 }
1695 
1696 //
1697 // ModelEvaluator::OutArgs
1698 //
1699 
1700 inline
1702 { return modelEvalDescription_; }
1703 
1704 inline
1706 {
1707  return DfDp_.size();
1708 }
1709 
1710 inline
1712 {
1713  return g_.size();
1714 }
1715 
1716 inline
1718 
1719 inline
1721 ModelEvaluator::OutArgs::get_f() const { return f_; }
1722 
1723 inline
1725 {
1726  assert_j(j);
1727  g_[j] = g_j;
1728 }
1729 
1730 inline
1733 {
1734  assert_j(j);
1735  return g_[j];
1736 }
1737 
1738 inline
1740 {
1741  assert_supports(OUT_ARG_g_sg, j);
1742  g_sg_[j] = g_sg_j;
1743 }
1744 
1745 inline
1748 {
1749  assert_supports(OUT_ARG_g_sg, j);
1750  return g_sg_[j];
1751 }
1752 
1753 inline
1755 {
1756  assert_supports(OUT_ARG_g_mp, j);
1757  g_mp_[j] = g_mp_j;
1758 }
1759 
1760 inline
1763 {
1764  assert_supports(OUT_ARG_g_mp, j);
1765  return g_mp_[j];
1766 }
1767 
1768 inline
1770 inline
1772 
1773 inline
1775 inline
1777 
1778 inline
1780 { return W_properties_; }
1781 inline
1783 { return WPrec_properties_; }
1784 
1785 inline
1786 void ModelEvaluator::OutArgs::set_DfDp( int l, const Derivative &DfDp_l )
1787 {
1788  assert_supports(OUT_ARG_DfDp,l);
1789  DfDp_[l] = DfDp_l;
1790 }
1791 
1792 inline
1795 {
1796  assert_supports(OUT_ARG_DfDp,l);
1797  return DfDp_[l];
1798 }
1799 
1800 inline
1803 {
1804  assert_supports(OUT_ARG_DfDp,l);
1805  return DfDp_properties_[l];
1806 }
1807 
1808 inline
1810 {
1811  assert_supports(OUT_ARG_DfDp_sg,l);
1812  DfDp_sg_[l] = DfDp_sg_l;
1813 }
1814 
1815 inline
1818 {
1819  assert_supports(OUT_ARG_DfDp_sg,l);
1820  return DfDp_sg_[l];
1821 }
1822 
1823 inline
1826 {
1827  assert_supports(OUT_ARG_DfDp_sg,l);
1828  return DfDp_sg_properties_[l];
1829 }
1830 
1831 inline
1833 {
1834  assert_supports(OUT_ARG_DfDp_mp,l);
1835  DfDp_mp_[l] = DfDp_mp_l;
1836 }
1837 
1838 inline
1841 {
1842  assert_supports(OUT_ARG_DfDp_mp,l);
1843  return DfDp_mp_[l];
1844 }
1845 
1846 inline
1849 {
1850  assert_supports(OUT_ARG_DfDp_mp,l);
1851  return DfDp_mp_properties_[l];
1852 }
1853 
1854 inline
1855 void ModelEvaluator::OutArgs::set_DgDx_dot( int j, const Derivative &DgDx_dot_j )
1856 {
1857  assert_supports(OUT_ARG_DgDx_dot,j);
1858  DgDx_dot_[j] = DgDx_dot_j;
1859 }
1860 
1861 inline
1864 {
1865  assert_supports(OUT_ARG_DgDx_dot,j);
1866  return DgDx_dot_[j];
1867 }
1868 
1869 inline
1872 {
1873  assert_supports(OUT_ARG_DgDx_dot,j);
1874  return DgDx_dot_properties_[j];
1875 }
1876 
1877 inline
1878 void ModelEvaluator::OutArgs::set_DgDx_dot_sg( int j, const SGDerivative &DgDx_dot_sg_j )
1879 {
1880  assert_supports(OUT_ARG_DgDx_dot_sg,j);
1881  DgDx_dot_sg_[j] = DgDx_dot_sg_j;
1882 }
1883 
1884 inline
1887 {
1888  assert_supports(OUT_ARG_DgDx_dot_sg,j);
1889  return DgDx_dot_sg_[j];
1890 }
1891 
1892 inline
1895 {
1896  assert_supports(OUT_ARG_DgDx_dot_sg,j);
1897  return DgDx_dot_sg_properties_[j];
1898 }
1899 
1900 inline
1901 void ModelEvaluator::OutArgs::set_DgDx_dot_mp( int j, const MPDerivative &DgDx_dot_mp_j )
1902 {
1903  assert_supports(OUT_ARG_DgDx_dot_mp,j);
1904  DgDx_dot_mp_[j] = DgDx_dot_mp_j;
1905 }
1906 
1907 inline
1910 {
1911  assert_supports(OUT_ARG_DgDx_dot_mp,j);
1912  return DgDx_dot_mp_[j];
1913 }
1914 
1915 inline
1918 {
1919  assert_supports(OUT_ARG_DgDx_dot_mp,j);
1920  return DgDx_dot_mp_properties_[j];
1921 }
1922 
1923 inline
1924 void ModelEvaluator::OutArgs::set_DgDx_dotdot( int j, const Derivative &DgDx_dotdot_j )
1925 {
1926  assert_supports(OUT_ARG_DgDx_dotdot,j);
1927  DgDx_dotdot_[j] = DgDx_dotdot_j;
1928 }
1929 
1930 inline
1933 {
1934  assert_supports(OUT_ARG_DgDx_dotdot,j);
1935  return DgDx_dotdot_[j];
1936 }
1937 
1938 inline
1941 {
1942  assert_supports(OUT_ARG_DgDx_dotdot,j);
1943  return DgDx_dotdot_properties_[j];
1944 }
1945 
1946 inline
1947 void ModelEvaluator::OutArgs::set_DgDx_dotdot_sg( int j, const SGDerivative &DgDx_dotdot_sg_j )
1948 {
1949  assert_supports(OUT_ARG_DgDx_dotdot_sg,j);
1950  DgDx_dotdot_sg_[j] = DgDx_dotdot_sg_j;
1951 }
1952 
1953 inline
1956 {
1957  assert_supports(OUT_ARG_DgDx_dotdot_sg,j);
1958  return DgDx_dotdot_sg_[j];
1959 }
1960 
1961 inline
1964 {
1965  assert_supports(OUT_ARG_DgDx_dotdot_sg,j);
1966  return DgDx_dotdot_sg_properties_[j];
1967 }
1968 
1969 inline
1970 void ModelEvaluator::OutArgs::set_DgDx_dotdot_mp( int j, const MPDerivative &DgDx_dotdot_mp_j )
1971 {
1972  assert_supports(OUT_ARG_DgDx_dotdot_mp,j);
1973  DgDx_dotdot_mp_[j] = DgDx_dotdot_mp_j;
1974 }
1975 
1976 inline
1979 {
1980  assert_supports(OUT_ARG_DgDx_dotdot_mp,j);
1981  return DgDx_dotdot_mp_[j];
1982 }
1983 
1984 inline
1987 {
1988  assert_supports(OUT_ARG_DgDx_dotdot_mp,j);
1989  return DgDx_dotdot_mp_properties_[j];
1990 }
1991 
1992 inline
1993 void ModelEvaluator::OutArgs::set_DgDx( int j, const Derivative &DgDx_j )
1994 {
1995  assert_supports(OUT_ARG_DgDx,j);
1996  DgDx_[j] = DgDx_j;
1997 }
1998 
1999 inline
2002 {
2003  assert_supports(OUT_ARG_DgDx,j);
2004  return DgDx_[j];
2005 }
2006 
2007 inline
2010 {
2011  assert_supports(OUT_ARG_DgDx,j);
2012  return DgDx_properties_[j];
2013 }
2014 
2015 inline
2017 {
2018  assert_supports(OUT_ARG_DgDx_sg,j);
2019  DgDx_sg_[j] = DgDx_sg_j;
2020 }
2021 
2022 inline
2025 {
2026  assert_supports(OUT_ARG_DgDx_sg,j);
2027  return DgDx_sg_[j];
2028 }
2029 
2030 inline
2033 {
2034  assert_supports(OUT_ARG_DgDx_sg,j);
2035  return DgDx_sg_properties_[j];
2036 }
2037 
2038 inline
2040 {
2041  assert_supports(OUT_ARG_DgDx_mp,j);
2042  DgDx_mp_[j] = DgDx_mp_j;
2043 }
2044 
2045 inline
2048 {
2049  assert_supports(OUT_ARG_DgDx_mp,j);
2050  return DgDx_mp_[j];
2051 }
2052 
2053 inline
2056 {
2057  assert_supports(OUT_ARG_DgDx_mp,j);
2058  return DgDx_mp_properties_[j];
2059 }
2060 
2061 inline
2062 void ModelEvaluator::OutArgs::set_DgDp( int j, int l, const Derivative &DgDp_j_l )
2063 {
2064  assert_supports(OUT_ARG_DgDp,j,l);
2065  DgDp_[ j*Np() + l ] = DgDp_j_l;
2066 }
2067 
2068 inline
2071 {
2072  assert_supports(OUT_ARG_DgDp,j,l);
2073  return DgDp_[ j*Np() + l ];
2074 }
2075 
2076 inline
2079 {
2080  assert_supports(OUT_ARG_DgDp,j,l);
2081  return DgDp_properties_[ j*Np() + l ];
2082 }
2083 
2084 inline
2085 void ModelEvaluator::OutArgs::set_DgDp_sg( int j, int l, const SGDerivative &DgDp_sg_j_l )
2086 {
2087  assert_supports(OUT_ARG_DgDp_sg,j,l);
2088  DgDp_sg_[ j*Np() + l ] = DgDp_sg_j_l;
2089 }
2090 
2091 inline
2094 {
2095  assert_supports(OUT_ARG_DgDp_sg,j,l);
2096  return DgDp_sg_[ j*Np() + l ];
2097 }
2098 
2099 inline
2102 {
2103  assert_supports(OUT_ARG_DgDp_sg,j,l);
2104  return DgDp_sg_properties_[ j*Np() + l ];
2105 }
2106 
2107 inline
2108 void ModelEvaluator::OutArgs::set_DgDp_mp( int j, int l, const MPDerivative &DgDp_mp_j_l )
2109 {
2110  assert_supports(OUT_ARG_DgDp_mp,j,l);
2111  DgDp_mp_[ j*Np() + l ] = DgDp_mp_j_l;
2112 }
2113 
2114 inline
2117 {
2118  assert_supports(OUT_ARG_DgDp_mp,j,l);
2119  return DgDp_mp_[ j*Np() + l ];
2120 }
2121 
2122 inline
2125 {
2126  assert_supports(OUT_ARG_DgDp_mp,j,l);
2127  return DgDp_mp_properties_[ j*Np() + l ];
2128 }
2129 
2130 inline
2132 { f_poly_ = f_poly; }
2133 
2134 inline
2137 { return f_poly_; }
2138 
2139 inline
2141 { f_sg_ = f_sg; }
2142 
2143 inline
2146 { return f_sg_; }
2147 
2148 inline
2150 
2151 inline
2153 
2154 inline
2156 { f_mp_ = f_mp; }
2157 
2158 inline
2161 { return f_mp_; }
2162 
2163 inline
2165 
2166 inline
2168 
2169 //
2170 // ModelEvaluator::InArgsSetup
2171 //
2172 
2173 inline
2174 void ModelEvaluator::InArgsSetup::setModelEvalDescription( const std::string &new_modelEvalDescription )
2175 {
2176  this->_setModelEvalDescription(new_modelEvalDescription);
2177 }
2178 
2179 inline
2181 { this->_set_Np(new_Np); }
2182 
2183 inline
2185 { this->_setSupports(arg,new_supports); }
2186 
2187 inline
2188 void ModelEvaluator::InArgsSetup::setSupports( EInArgs_p_sg arg, int l, bool new_supports )
2189 { this->_setSupports(arg,l,new_supports); }
2190 
2191 inline
2192 void ModelEvaluator::InArgsSetup::setSupports( EInArgs_p_mp arg, int l, bool new_supports )
2193 { this->_setSupports(arg,l,new_supports); }
2194 
2195 //
2196 // ModelEvaluator::OutArgsSetup
2197 //
2198 
2199 inline
2200 void ModelEvaluator::OutArgsSetup::setModelEvalDescription( const std::string &new_modelEvalDescription )
2201 {
2202  this->_setModelEvalDescription(new_modelEvalDescription);
2203 }
2204 
2205 inline
2206 void ModelEvaluator::OutArgsSetup::set_Np_Ng(int new_Np, int new_Ng)
2207 { this->_set_Np_Ng(new_Np,new_Ng); }
2208 
2209 inline
2211 { this->_setSupports(arg,new_supports); }
2212 
2213 inline
2215 { this->_setSupports(arg,l,new_supports); }
2216 
2217 inline
2219 { this->_setSupports(arg,j,new_supports); }
2220 
2221 inline
2223 { this->_setSupports(arg,j,new_supports); }
2224 
2225 inline
2227 { this->_setSupports(arg,j,new_supports); }
2228 
2229 inline
2230 void ModelEvaluator::OutArgsSetup::setSupports( EOutArgsDgDp arg, int j, int l, const DerivativeSupport& new_supports )
2231 { this->_setSupports(arg,j,l,new_supports); }
2232 
2233 inline
2234 void ModelEvaluator::OutArgsSetup::setSupports( EOutArgs_g_sg arg, int j, bool new_supports )
2235 { this->_setSupports(arg,j,new_supports); }
2236 
2237 inline
2239 { this->_setSupports(arg,l,new_supports); }
2240 
2241 inline
2243 { this->_setSupports(arg,j,new_supports); }
2244 
2245 inline
2247 { this->_setSupports(arg,j,new_supports); }
2248 
2249 inline
2251 { this->_setSupports(arg,j,new_supports); }
2252 
2253 inline
2255 { this->_setSupports(arg,j,l,new_supports); }
2256 
2257 inline
2258 void ModelEvaluator::OutArgsSetup::setSupports( EOutArgs_g_mp arg, int j, bool new_supports )
2259 { this->_setSupports(arg,j,new_supports); }
2260 
2261 inline
2263 { this->_setSupports(arg,l,new_supports); }
2264 
2265 inline
2267 { this->_setSupports(arg,j,new_supports); }
2268 
2269 inline
2271 { this->_setSupports(arg,j,new_supports); }
2272 
2273 inline
2275 { this->_setSupports(arg,j,new_supports); }
2276 
2277 inline
2279 { this->_setSupports(arg,j,l,new_supports); }
2280 
2281 inline
2283 { this->_set_W_properties(properties); }
2284 inline
2286 { this->_set_WPrec_properties(properties); }
2287 
2288 inline
2290 {
2291  this->_set_DfDp_properties(l,properties);
2292 }
2293 
2294 inline
2296 {
2297  this->_set_DgDx_dot_properties(j,properties);
2298 }
2299 
2300 inline
2302 {
2303  this->_set_DgDx_dotdot_properties(j,properties);
2304 }
2305 
2306 inline
2308 {
2309  this->_set_DgDx_properties(j,properties);
2310 }
2311 
2312 inline
2314 {
2315  this->_set_DgDp_properties(j,l,properties);
2316 }
2317 
2318 inline
2320 {
2321  this->_set_DfDp_sg_properties(l,properties);
2322 }
2323 
2324 inline
2326 {
2327  this->_set_DgDx_dot_sg_properties(j,properties);
2328 }
2329 
2330 inline
2332 {
2333  this->_set_DgDx_dotdot_sg_properties(j,properties);
2334 }
2335 
2336 inline
2338 {
2339  this->_set_DgDx_sg_properties(j,properties);
2340 }
2341 
2342 inline
2344 {
2345  this->_set_DgDp_sg_properties(j,l,properties);
2346 }
2347 
2348 inline
2350 {
2351  this->_set_DfDp_mp_properties(l,properties);
2352 }
2353 
2354 inline
2356 {
2357  this->_set_DgDx_dot_mp_properties(j,properties);
2358 }
2359 
2360 inline
2362 {
2363  this->_set_DgDx_dotdot_mp_properties(j,properties);
2364 }
2365 
2366 inline
2368 {
2369  this->_set_DgDx_mp_properties(j,properties);
2370 }
2371 
2372 inline
2374 {
2375  this->_set_DgDp_mp_properties(j,l,properties);
2376 }
2377 
2378 } // namespace EpetraExt
2379 
2380 #endif // EPETRA_EXT_MODEL_EVALUATOR_HPP
Simple aggregate class that stores a derivative object as a general linear operator or as a multi-vec...
DerivativeMultiVector getDerivativeMultiVector() const
mp_const_vector_t get_x_mp() const
Get multi-point solution vector.
Teuchos::RCP< const Teuchos::Polynomial< Epetra_Vector > > get_x_dot_poly() const
Get time derivative vector Taylor polynomial.
EDerivativeMultiVectorOrientation getMultiVectorOrientation() const
SGDerivative get_DgDx_dotdot_sg(int j) const
bool supports(EOutArgsMembers arg) const
void set_WPrec_properties(const DerivativeProperties &properties)
Teuchos::RCP< const Epetra_Vector > x_dotdot_
MPDerivativeMultiVector(const mp_multivector_t &mv, const EDerivativeMultiVectorOrientation orientation=DERIV_MV_BY_COL, const Teuchos::Array< int > &paramIndexes=Teuchos::Array< int >())
virtual Teuchos::RCP< const Epetra_Map > get_g_map(int j) const
.
void set_W_properties(const DerivativeProperties &properties)
DerivativeProperties get_DgDx_sg_properties(int j) const
virtual InArgs createInArgs() const =0
mp_const_vector_t get_p_mp(int l) const
Get multi-point parameter vector.
Teuchos::RCP< const Teuchos::Polynomial< Epetra_Vector > > x_poly_
virtual Teuchos::RCP< Epetra_Operator > create_DgDx_op(int j) const
Evaluation< Epetra_Vector > get_g(int j) const
Get g(j) where 0 &lt;= j &amp;&amp; j &lt; this-&gt;Ng().
mp_const_vector_t get_x_dotdot_mp() const
void set_DgDx(int j, const Derivative &DgDx_j)
void setSupports(EOutArgsMembers arg, bool supports=true)
A very approximate derivative (i.e. for a preconditioner)
RCP(ObjType *p, ERCPWeakNoDealloc)
Teuchos::RCP< const Epetra_Vector > get_x_dotdot() const
void set_x_dotdot_poly(const Teuchos::RCP< const Teuchos::Polynomial< Epetra_Vector > > &x_dotdot_poly)
mp_vector_t get_g_mp(int j) const
Get multi-point response.
Preconditioner()
Default constructor of null Operatir.
Time second derivative vector Taylor polynomial.
void _setSupports(EOutArgsMembers arg, bool supports)
Teuchos::Array< DerivativeSupport > supports_t
void _set_DfDp_properties(int l, const DerivativeProperties &properties)
virtual Teuchos::RCP< const Epetra_Vector > get_p_init(int l) const
void set_DgDx_sg_properties(int j, const DerivativeProperties &properties)
virtual Teuchos::RCP< const Epetra_Map > get_f_map() const =0
.
virtual Teuchos::RCP< const Epetra_Map > get_x_map() const =0
.
Teuchos::RCP< Stokhos::EpetraOperatorOrthogPoly > sg_operator_t
Short-hand for stochastic Galerkin operator type.
Teuchos::RCP< Teuchos::Polynomial< Epetra_Vector > > get_f_poly() const
Get residual vector Taylor polynomial.
Preconditioner(const Teuchos::RCP< Epetra_Operator > &PrecOp_, bool isAlreadyInverted_)
Usable constructor to set the (Epetra_Operator,bool) pair.
void set_x(const Teuchos::RCP< const Epetra_Vector > &x)
void set_x_dot(const Teuchos::RCP< const Epetra_Vector > &x_dot)
virtual Teuchos::RCP< const Epetra_Vector > get_p_upper_bounds(int l) const
void set_x_dotdot_mp(const mp_const_vector_t &x_dotdot_mp)
Teuchos::RCP< Epetra_Operator > getLinearOp(const std::string &modelEvalDescription, const ModelEvaluator::Derivative &deriv, const std::string &derivName)
Teuchos::RCP< Epetra_MultiVector > get_DgDp_mv(const int j, const int l, const ModelEvaluator::OutArgs &outArgs, const ModelEvaluator::EDerivativeMultiVectorOrientation mvOrientation)
virtual double get_t_upper_bound() const
Teuchos::RCP< const Stokhos::OrthogPolyBasis< int, double > > sg_basis_
virtual Teuchos::RCP< const Teuchos::Array< std::string > > get_p_names(int l) const
Get the names of the parameters associated with parameter subvector l if available.
SGDerivativeMultiVector(const Teuchos::RCP< Stokhos::EpetraMultiVectorOrthogPoly > &mv, const EDerivativeMultiVectorOrientation orientation=DERIV_MV_BY_COL, const Teuchos::Array< int > &paramIndexes=Teuchos::Array< int >())
bool funcOrDerivesAreSet(EOutArgsMembers arg) const
Return true if the function or its derivatives are set.
DerivativeProperties get_DfDp_sg_properties(int l) const
MPDerivative get_DgDx_dotdot_mp(int j) const
Teuchos::RCP< Epetra_Operator > get_W() const
Teuchos::Array< MPDerivative > mp_deriv_t
DerivativeProperties get_DgDx_mp_properties(int j) const
Teuchos::RCP< Epetra_MultiVector > get_DgDx_dot_mv(const int j, const ModelEvaluator::OutArgs &outArgs, const ModelEvaluator::EDerivativeMultiVectorOrientation mvOrientation)
void set_DfDp(int l, const Derivative &DfDp_l)
void set_WPrec(const Teuchos::RCP< Epetra_Operator > &WPrec)
Teuchos::RCP< Stokhos::ProductEpetraMultiVector > mp_multivector_t
Teuchos::RCP< Stokhos::EpetraMultiVectorOrthogPoly > getMultiVector() const
void _set_DgDp_mp_properties(int j, int l, const DerivativeProperties &properties)
Teuchos::RCP< Epetra_Operator > W_
Teuchos::RCP< Stokhos::ProductEpetraOperator > mp_operator_t
void set_DgDx_dotdot(int j, const Derivative &DgDx_dotdot_j)
void set_g_sg(int j, const sg_vector_t &g_sg_j)
Set stochastic Galerkin vector polynomial response.
Teuchos::RCP< const Stokhos::ProductEpetraMultiVector > mp_const_multivector_t
void set_f(const Evaluation< Epetra_Vector > &f)
SGDerivativeMultiVector getDerivativeMultiVector() const
void setSupports(EInArgsMembers arg, bool supports=true)
Teuchos::RCP< Epetra_Operator > PrecOp
Accessor for the Epetra_Operator.
Teuchos::RCP< const Teuchos::Polynomial< Epetra_Vector > > get_x_poly() const
Get solution vector Taylor polynomial.
DerivativeProperties get_WPrec_properties() const
DerivativeSupport(EDerivativeMultiVectorOrientation mvOrientation)
DerivativeProperties get_DgDp_properties(int j, int l) const
const Teuchos::Array< int > & getParamIndexes() const
DerivativeProperties get_DgDx_properties(int j) const
Teuchos::RCP< Epetra_Operator > getLinearOp() const
T * get() const
bool supports(EDerivativeMultiVectorOrientation mvOrientation) const
DerivativeProperties get_DgDp_mp_properties(int j, int l) const
DerivativeProperties get_W_properties() const
void setFailed() const
Set that the evaluation as a whole failed.
Teuchos::RCP< const Epetra_Vector > get_p(int l) const
void set_DfDp_sg(int l, const SGDerivative &DfDp_sg_l)
DerivativeProperties get_DgDx_dotdot_sg_properties(int j) const
Simple aggregate class that stores a derivative object as a general linear operator or as a multi-vec...
EDerivativeMultiVectorOrientation getOrientation() const
Teuchos::RCP< const Epetra_Vector > x_dot_
Teuchos::RCP< const Stokhos::Quadrature< int, double > > get_sg_quadrature() const
SGDerivative get_DgDp_sg(int j, int l) const
Teuchos::RCP< Epetra_MultiVector > getMultiVector(const std::string &modelEvalDescription, const ModelEvaluator::Derivative &deriv, const std::string &derivName, const ModelEvaluator::EDerivativeMultiVectorOrientation mvOrientation)
virtual Teuchos::RCP< Epetra_Operator > create_DgDx_dot_op(int j) const
void changeOrientation(const EDerivativeMultiVectorOrientation orientation)
virtual Teuchos::RCP< const Epetra_Vector > get_x_upper_bounds() const
Simple aggregate class that stores a derivative object as a general linear operator or as a multi-vec...
void set_sg_basis(const Teuchos::RCP< const Stokhos::OrthogPolyBasis< int, double > > &basis)
Teuchos::RCP< Stokhos::OrthogPolyExpansion< int, double, Stokhos::StandardStorage< int, double > > > sg_exp_
Multi-point &quot;W&quot; operator.
Teuchos::RCP< Stokhos::EpetraOperatorOrthogPoly > getLinearOp() const
Simple aggregate class for a derivative object represented as a column-wise multi-vector or its trans...
MPDerivativeMultiVector getDerivativeMultiVector() const
Teuchos::RCP< Epetra_Operator > get_WPrec() const
void set_x_dotdot(const Teuchos::RCP< const Epetra_Vector > &x_dotdot)
Stochastic Galerkin solution vector polynomial.
Teuchos::RCP< const Teuchos::Polynomial< Epetra_Vector > > x_dot_poly_
void set_W_sg(const sg_operator_t &W_sg)
Set stochastic Galerkin W operator polynomial.
Teuchos::RCP< Stokhos::EpetraVectorOrthogPoly > sg_vector_t
Short-hand for stochastic Galerkin vector type.
void set_DgDx_dot_sg(int j, const SGDerivative &DgDx_dot_j)
void set_DgDx_dot(int j, const Derivative &DgDx_dot_j)
DerivativeProperties get_DgDx_dot_sg_properties(int j) const
mp_const_vector_t get_x_dot_mp() const
Get multi-point time derivative vector.
sg_vector_t get_f_sg() const
Get stochastic Galerkin residual vector polynomial.
An approximate derivative (i.e. for a Jacobian)
void set_DgDx_dot_mp_properties(int j, const DerivativeProperties &properties)
void set_DgDp_properties(int j, int l, const DerivativeProperties &properties)
void set_DgDx_dotdot_mp(int j, const MPDerivative &DgDx_dotdot_j)
Teuchos::RCP< Epetra_MultiVector > getMultiVector() const
Evaluation(const Teuchos::RCP< ObjType > &obj)
void _set_DgDx_dotdot_mp_properties(int j, const DerivativeProperties &properties)
void set_DgDx_sg(int j, const SGDerivative &DgDx_j)
virtual Teuchos::ArrayView< const std::string > get_g_names(int j) const
Get the names of the response functions associated with response subvector j if available.
Teuchos::RCP< const Stokhos::EpetraVectorOrthogPoly > sg_const_vector_t
Short-hand for stochastic Galerkin vector type.
void set_p_mp(int l, const mp_const_vector_t &p_mp_l)
Set multi-point parameter vector.
void set_DgDx_mp(int j, const MPDerivative &DgDx_j)
void set_DgDp_sg(int j, int l, const SGDerivative &DgDp_sg_j_l)
void set_DfDp_properties(int l, const DerivativeProperties &properties)
void setModelEvalDescription(const std::string &modelEvalDescription)
Teuchos::RCP< Stokhos::EpetraOperatorOrthogPoly > lo_
void set_x_dotdot_sg(const sg_const_vector_t &x_dotdot_sg)
virtual Teuchos::RCP< const Epetra_Vector > get_x_lower_bounds() const
Teuchos::RCP< const Teuchos::Polynomial< Epetra_Vector > > get_x_dotdot_poly() const
virtual Teuchos::RCP< const Epetra_Vector > get_x_dotdot_init() const
Teuchos::RCP< Epetra_MultiVector > get_DfDp_mv(const int l, const ModelEvaluator::OutArgs &outArgs)
Derivative(const DerivativeMultiVector &dmv)
void set_p(int l, const Teuchos::RCP< const Epetra_Vector > &p_l)
void _set_DgDx_mp_properties(int j, const DerivativeProperties &properties)
void set_DgDp_sg_properties(int j, int l, const DerivativeProperties &properties)
Simple aggregate class for a derivative object represented as a column-wise multi-vector or its trans...
Teuchos::RCP< Epetra_MultiVector > getMultiVector() const
Derivative get_DgDp(int j, int l) const
void set_DgDx_dot_properties(int j, const DerivativeProperties &properties)
const Teuchos::Array< int > & getParamIndexes() const
Teuchos::RCP< Epetra_Operator > get_DfDp_op(const int l, const ModelEvaluator::OutArgs &outArgs)
sg_operator_t get_W_sg() const
Get stochastic Galerkin W operator polynomial.
void set_x_dot_sg(const sg_const_vector_t &x_dot_sg)
Set stochastic Galerkin time derivative vector polynomial.
MPDerivative(const MPDerivativeMultiVector &dmv)
DerivativeSupport & plus(EDerivativeMultiVectorOrientation mvOrientation)
Teuchos::RCP< const Epetra_Vector > get_x_dot() const
Multi-point time second derivative vector.
Preconditioner operator (approx Jacobian)
MPDerivative(const mp_multivector_t &mv, const EDerivativeMultiVectorOrientation orientation=DERIV_MV_BY_COL)
Teuchos::RCP< const Stokhos::ProductEpetraVector > mp_const_vector_t
bool supports(EInArgsMembers arg) const
EDerivativeMultiVectorOrientation getOrientation() const
void assert_supports(EInArgsMembers arg) const
Teuchos::RCP< Epetra_MultiVector > get_DgDx_mv(const int j, const ModelEvaluator::OutArgs &outArgs, const ModelEvaluator::EDerivativeMultiVectorOrientation mvOrientation)
void _set_WPrec_properties(const DerivativeProperties &WPrec_properties)
Teuchos::RCP< const Stokhos::OrthogPolyBasis< int, double > > get_sg_basis() const
void set_W(const Teuchos::RCP< Epetra_Operator > &W)
void _set_DgDx_dot_mp_properties(int j, const DerivativeProperties &properties)
virtual Teuchos::RCP< const Epetra_Vector > get_x_dot_init() const
virtual Teuchos::RCP< const Epetra_Map > get_p_map(int l) const
.
Derivative(const Teuchos::RCP< Epetra_Operator > &lo)
void _set_DgDx_dot_properties(int j, const DerivativeProperties &properties)
mp_operator_t get_W_mp() const
Get multi-point W.
Teuchos::RCP< Stokhos::EpetraMultiVectorOrthogPoly > mv_
RCP< ObjType > & operator=(const RCP< ObjType > &r_ptr)
void set_sg_expansion(const Teuchos::RCP< Stokhos::OrthogPolyExpansion< int, double, Stokhos::StandardStorage< int, double > > > &exp)
virtual Teuchos::RCP< Epetra_Operator > create_DgDp_op(int j, int l) const
void setModelEvalDescription(const std::string &modelEvalDescription)
void set_f_sg(const sg_vector_t &f_sg)
Set stochastic Galerkin residual vector polynomial.
DerivativeProperties(EDerivativeLinearity in_linearity, ERankStatus in_rank, bool in_supportsAdjoint)
SGDerivative(const Teuchos::RCP< Stokhos::EpetraOperatorOrthogPoly > &lo)
Teuchos::RCP< Stokhos::EpetraMultiVectorOrthogPoly > getMultiVector() const
Teuchos::RCP< const Stokhos::Quadrature< int, double > > sg_quad_
void set_DgDp(int j, int l, const Derivative &DgDp_j_l)
void set_W_mp(const mp_operator_t &W_sg)
Set multi-point W.
Teuchos::Array< Evaluation< Epetra_Vector > > g_t
void set_f_poly(const Teuchos::RCP< Teuchos::Polynomial< Epetra_Vector > > &f_poly)
Set residual vector Taylor polynomial.
void set_DgDx_dotdot_sg_properties(int j, const DerivativeProperties &properties)
virtual Teuchos::RCP< Epetra_Operator > create_DgDx_dotdot_op(int j) const
void _set_DgDx_dot_sg_properties(int j, const DerivativeProperties &properties)
Multi-point time derivative vector.
EDerivativeMultiVectorOrientation getMultiVectorOrientation() const
Teuchos::Array< DerivativeProperties > deriv_properties_t
sg_vector_t get_g_sg(int j) const
Get stochastic Galerkin vector polynomial response.
DerivativeProperties get_DgDx_dotdot_mp_properties(int j) const
DerivativeProperties get_DfDp_properties(int l) const
void set_x_dot_mp(const mp_const_vector_t &x_dot_mp)
Set multi-point time derivative vector.
bool isFailed() const
Return if the evaluation failed or not.
void set_DfDp_mp_properties(int l, const DerivativeProperties &properties)
void set_DgDx_dot_mp(int j, const MPDerivative &DgDx_dot_j)
Derivative(const Teuchos::RCP< Epetra_MultiVector > &mv, const EDerivativeMultiVectorOrientation orientation=DERIV_MV_BY_COL)
void set_x_poly(const Teuchos::RCP< const Teuchos::Polynomial< Epetra_Vector > > &x_poly)
DerivativeMultiVector(const Teuchos::RCP< Epetra_MultiVector > &mv, const EDerivativeMultiVectorOrientation orientation=DERIV_MV_BY_COL, const Teuchos::Array< int > &paramIndexes=Teuchos::Array< int >())
virtual Teuchos::RCP< const Epetra_Vector > get_p_lower_bounds(int l) const
void changeOrientation(const EDerivativeMultiVectorOrientation orientation)
void reset(const Teuchos::RCP< ObjType > &obj, EEvalType evalType)
Simple aggregate struct that stores a preconditioner as an Epetra_Operator and a bool, about whether it is inverted or not.
EDerivativeMultiVectorOrientation getOrientation() const
void _set_DfDp_mp_properties(int l, const DerivativeProperties &properties)
Solution vector Taylor polynomial.
Stochastic Galerkin time derivative vector polynomial.
Teuchos::Array< Teuchos::RCP< const Epetra_Vector > > p_t
virtual double getInfBound() const
Return the value of an infinite bound.
sg_const_vector_t get_p_sg(int l) const
Get stochastic Galerkin vector polynomial parameter.
void _set_DgDp_properties(int j, int l, const DerivativeProperties &properties)
Stochastic Galerkin residual vector polynomial.
virtual double get_t_lower_bound() const
Stochastic Galerkin &quot;W&quot; operator polyomial.
Teuchos::Array< sg_const_vector_t > p_sg_t
Teuchos::RCP< Epetra_MultiVector > get_DgDx_dotdot_mv(const int j, const ModelEvaluator::OutArgs &outArgs, const ModelEvaluator::EDerivativeMultiVectorOrientation mvOrientation)
SGDerivative(const Teuchos::RCP< Stokhos::EpetraMultiVectorOrthogPoly > &mv, const EDerivativeMultiVectorOrientation orientation=DERIV_MV_BY_COL)
Teuchos::RCP< const Epetra_Vector > x_
DerivativeSupport(EDerivativeLinearOp, EDerivativeMultiVectorOrientation mvOrientation)
virtual Teuchos::RCP< const Epetra_Vector > get_x_init() const
mp_vector_t get_f_mp() const
Get multi-point residual vector.
void set_DfDp_sg_properties(int l, const DerivativeProperties &properties)
Teuchos::Array< mp_const_vector_t > p_mp_t
virtual double get_t_init() const
DerivativeProperties get_DgDx_dotdot_properties(int j) const
virtual void evalModel(const InArgs &inArgs, const OutArgs &outArgs) const =0
EDerivativeMultiVectorOrientation getMultiVectorOrientation() const
Teuchos::RCP< Teuchos::Polynomial< Epetra_Vector > > f_poly_
Teuchos::RCP< Stokhos::ProductEpetraVector > mp_vector_t
void set_DfDp_mp(int l, const MPDerivative &DfDp_mp_l)
void set_DgDx_dotdot_mp_properties(int j, const DerivativeProperties &properties)
Teuchos::RCP< Stokhos::OrthogPolyExpansion< int, double, Stokhos::StandardStorage< int, double > > > get_sg_expansion() const
Time derivative vector Taylor polynomial.
Simple aggregate class for a derivative object represented as a column-wise multi-vector or its trans...
void _set_DgDx_properties(int j, const DerivativeProperties &properties)
virtual Teuchos::RCP< EpetraExt::ModelEvaluator::Preconditioner > create_WPrec() const
void set_DgDx_properties(int j, const DerivativeProperties &properties)
MPDerivative get_DgDp_mp(int j, int l) const
void set_DgDp_mp(int j, int l, const MPDerivative &DgDp_mp_j_l)
void set_DgDx_dot_sg_properties(int j, const DerivativeProperties &properties)
SGDerivative(const SGDerivativeMultiVector &dmv)
DerivativeProperties get_DgDx_dot_mp_properties(int j) const
DerivativeProperties get_DfDp_mp_properties(int l) const
DerivativeProperties get_DgDx_dot_properties(int j) const
void set_x_dot_poly(const Teuchos::RCP< const Teuchos::Polynomial< Epetra_Vector > > &x_dot_poly)
Set time derivative vector Taylor polynomial.
void _set_DgDp_sg_properties(int j, int l, const DerivativeProperties &properties)
void set_g_mp(int j, const mp_vector_t &g_mp_j)
Set multi-point response.
virtual Teuchos::RCP< Epetra_Operator > create_DfDp_op(int l) const
void set_x_mp(const mp_const_vector_t &x_mp)
Set multi-point solution vector.
Stochastic Galerkin time second derivative vector polynomial.
const Teuchos::Array< int > & getParamIndexes() const
void set_sg_quadrature(const Teuchos::RCP< const Stokhos::Quadrature< int, double > > &quad)
void set_x_sg(const sg_const_vector_t &x_sg)
Set stochastic Galerkin solution vector polynomial.
void set_DgDx_dotdot_sg(int j, const SGDerivative &DgDx_dotdot_j)
void _set_DgDx_dotdot_properties(int j, const DerivativeProperties &properties)
void _setSupports(EInArgsMembers arg, bool supports)
Teuchos::RCP< Epetra_Operator > WPrec_
void set_f_mp(const mp_vector_t &f_mp)
Set multi-point residual vector.
Evaluation< Epetra_Vector > get_f() const
void assert_supports(EOutArgsMembers arg) const
virtual Teuchos::RCP< Epetra_Operator > create_W() const
If supported, create a Epetra_Operator object for W to be evaluated.
sg_const_vector_t get_x_sg() const
Get stochastic Galerkin solution vector polynomial.
void _set_DgDx_sg_properties(int j, const DerivativeProperties &properties)
Teuchos::RCP< const Epetra_Vector > get_x() const
Set solution vector Taylor polynomial.
void _set_W_properties(const DerivativeProperties &W_properties)
void changeOrientation(const EDerivativeMultiVectorOrientation orientation)
DerivativeSupport(EDerivativeMultiVectorOrientation mvOrientation1, EDerivativeMultiVectorOrientation mvOrientation2)
DerivativeSupport & plus(EDerivativeLinearOp)
DerivativeProperties get_DgDp_sg_properties(int j, int l) const
virtual OutArgs createOutArgs() const =0
void _set_DgDx_dotdot_sg_properties(int j, const DerivativeProperties &properties)
sg_const_vector_t get_x_dot_sg() const
Get stochastic Galerkin time derivative vector polynomial.
Teuchos::Array< SGDerivative > sg_deriv_t
void set_p_sg(int l, const sg_const_vector_t &p_sg_l)
Set stochastic Galerkin vector polynomial parameter.
Base interface for evaluating a stateless &quot;model&quot;.
void set_DgDx_dotdot_properties(int j, const DerivativeProperties &properties)
void _setModelEvalDescription(const std::string &modelEvalDescription)
Teuchos::RCP< const Teuchos::Polynomial< Epetra_Vector > > x_dotdot_poly_
#define TEUCHOS_TEST_FOR_EXCEPT(throw_exception_test)
void _set_DfDp_sg_properties(int l, const DerivativeProperties &properties)
std::string toString(const int &x)
#define TEUCHOS_UNREACHABLE_RETURN(dummyReturnVal)
void _setModelEvalDescription(const std::string &modelEvalDescription)
Teuchos::RCP< const Stokhos::ProductEpetraOperator > mp_const_operator_t
void set_g(int j, const Evaluation< Epetra_Vector > &g_j)
Set g(j) where 0 &lt;= j &amp;&amp; j &lt; this-&gt;Ng().
void set_DgDx_mp_properties(int j, const DerivativeProperties &properties)
void set_DgDp_mp_properties(int j, int l, const DerivativeProperties &properties)
Evaluation(const Teuchos::RCP< ObjType > &obj, EEvalType evalType)
sg_const_vector_t get_x_dotdot_sg() const