TrilinosCouplings
Development
|
example_CurlLSFEM.cpp | Example solution of a div-curl system on a hexahedral mesh using curl-conforming (edge) elements |
example_CVFEM.cpp | Example solution of an Advection Diffusion equation on a quadrilateral or triangular mesh using the CVFEM |
example_DivLSFEM.cpp | Example solution of a div-curl system on a hexahedral mesh using div-conforming (face) elements |
example_GradDiv.cpp | Example solution grad-div diffusion system with div-conforming (face) elements |
example_Maxwell.cpp | Example solution of the eddy current Maxwell's equations using curl-conforming (edge) elements |
example_Poisson.cpp | Example solution of a Poisson equation on a hexahedral mesh using nodal (Hgrad) elements |
example_Poisson_NoFE_Tpetra.cpp | Example solution of a Poisson equation on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled but not solved |
example_Poisson_stk.cpp | Example solution of a Poisson equation on a hexahedral or tetrahedral mesh using nodal (Hgrad) elements |
example_StabilizedADR.cpp | Example solution of a steady-state advection-diffusion-reaction equation with Dirichlet boundary conditon on a hexahedral mesh using nodal (Hgrad) elements and stabilization |
HybridIntrepidPoisson2D_Pamgen_Tpetra_main.cpp | Example: Discretize Poisson's equation with Dirichlet boundary conditions on a quadrilateral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved |
HybridIntrepidPoisson3D_Pamgen_Tpetra_main.cpp | Example: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved |
IntrepidPoisson_Pamgen_Epetra_main.cpp | Example: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Epetra data structures, and optionally solved |
IntrepidPoisson_Pamgen_Tpetra_main.cpp | Example: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved |
ml_nox_fineinterface.H | |
ml_nox_preconditioner.H | |
ml_nox_preconditioner1.cpp | |
ml_nox_preconditioner2.cpp | |
ml_nox_preconditioner_utils.cpp | ML nonlinear preconditioner and solver |
nlnml_ConstrainedMultiLevelOperator.H | |
nlnml_finelevelnoxinterface.H | |
nlnml_nonlinearlevel.H | |
nlnml_preconditioner.H | |
nlnml_preconditioner1.cpp | |
nlnml_preconditioner_utils.cpp | ML nonlinear preconditioner and solver utilities |
nlnml_preconditioner_utils.H | ML nonlinear preconditioner and solver utility routines |
nlnml_prepostoperator.H | |
TrilinosCouplings_IntrepidPoissonExample_SolveWithBelos.hpp | Generic Belos solver for the Intrepid Poisson test problem example |
TrilinosCouplings_IntrepidPoissonExampleHelpers.hpp | Helper functions for Poisson test problem with Intrepid + Pamgen |